

State-of-the-Art: End-to-End Deep Learning for Art Appraisal

Alexander Verge (averge), Ishaan Singal (ishaan) (Presentation Video Link)

StanfordComputer Science

Test

54.76

51.46

51.78

Dev

52.24

52.01

52.52

Motivation

- The appraisal of an artwork is susceptible to an expert's biases
- A robust predictive model could provide radical transparency on art valuation
- Uncovering raw image features that correlate with art valuation could provide new, insightful signal to the art community

Why Deep Learning?

- Recently there have been tremendous advancements in image processing and image understanding thanks to convolutional models
- Existing models can be applied to our problem with little modification

Objective

- Collect a dataset of artwork with valuations
- Develop a model capable of accurately predicting an artworks realized auction value

Datase

- · Collected 100K images from Christies
- Resized all images to 256px by 256px
- Converted all valuations to USD
- · Problems:
 - Dataset contained out of scope pieces (furniture, ceramics, etc.)
 - 2. Positively skewed distribution
- Solution: Modified dataset to contain only "high-value" art (defined as appraisal over 100,000 USD)
- Final dataset comprised train/dev/test allocations of 16705/2088/2088

Original artwork by Paul Signac:

Pre-processed artwork for training:

Approach

Loss function:

 Mean Absolute Percentage Error (MAPE)

Linear Regression

• Learning rate (α)

Multilayer Perceptron

- Learning rate (α) , with early stopping
- Number of hidden layers (l)
- Number of units per layer (n_l)

Vanilla CNN

- Learning rate (α)
- 64 filters with kernel size (k)

ΔlevNet

- Learning rate (lpha), with early stopping
- Dropout keep probability (p_k)

VGG-16

- Learning rate (α), with early stopping
- Number of unfrozen layers (n_u)
- Number of added layers (n_a)
- Number of units per layer (n_l)

Example predictions

Artist: Childe Hassam Artist: Andy Warhol Value: 170,500 USD Value: 56,165,000 USD

Results

Linear Regression

• $\alpha = 0.01$

Multilayer Perceptron

• $\alpha = 0.001$, l = 25, $n_l = 5$

Vanilla CNN

Model

Regression

Multilayer

Perceptron

Vanilla

AlexNet

VGG-16

CNN

Linear

• $\alpha = 0.001, k = 11$

AlexNet

- $\alpha = 0.0001$, $p_k = 0.5$
- Train MAPE w/o early stopping: 20.48 VGG-16
- $\alpha = 0.001$, $n_u = 2$, $n_a = n_l = 0$
- Train MAPE w/o early stopping: 14.88

Example A

79869.80

154893.34

150813.73

144910.42

170875.59

esuits

MAPE MAPE MAPE Linear 55.72 56.96 56.12 Regression Multilayer 51.30 52.13 51.38 Perceptron Perceptron 51.30 52.13 51.38

51.29

51.43

51.82

Train

Final model performance under optimal hyper-parameter configurations

Conclusion

Model

Vanilla CNN

AlexNet

VGG-16

- It is possible to achieve low bias and deeper, more complex models result in the lowest training set loss
- Generalization to unseen data is the most difficult aspect of the problem
- Standard techniques for variance reduction are insufficient

Future Work

Example B

168104.11

167464.44

317116.41

159760.98

180655.05

- Expand dataset
- Continue architecture search
- Establish human baseline
- Discretize appraisals for categorical prediction
- Use additional information beyond raw image inputs

Acknowledgements

- Jay Whang
- Andrew Ng
- Kian Katanforoosh