

Describe That GIF

A GIF Description Generator

MOTIVATION

Finding the right GIF is hard.

Despite their rising popularity, there is a surprising lack of scholarly work on animated GIFs in the computer vision community. We take a step towards improved GIF search and making GIFs more accessible by generating natural language descriptions of GIFs. We trained two models: CNN – LSTM and CNN - LSTM with attention and analyzed their performance on the TGIF dataset.

Results

Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR	ROUGE	CIDEr
Baseline (Rand LSTM-CNN)	49.7	27.2	14.5	5.2	13.6	36.6	7.6
CNN-LSTM	40.5	22.8	13.1	7.4	14.8	33.2	14.5
CNN-LSTM with Attention	37.4	18.0	8.7	4.5	13.3	26.6	12.3

The CNN-LSTM model performed the best, outperforming the baseline model by 90.8% (6.9) on CIDEr score, 8.8% (1.2) on METEOR score and 42% (2.2) on BLEU-4 score.

Data and Features

90,000 GIFs (from Tumblr) with descriptions

82% train, 5.5% dev, and 12.5% test

Training and validation set contain one reference description per GIF Test set contains three reference descriptions per GIF

an elephant appears to be a man in fancy attire is jumping on a trampoline.

Encoder:

pointing at his bow tie.

pretrained ResNet-34 Kinetics CNN

- Split GIF into individual frames and encoded every 10th frame
- Capped number of encodings at 10, resulting in a m X 5120 dimension vector which was our input into the LSTM models.

a singer with tattoos on his arm is running his fingers through

a guy wearing a white shirt, brushes his hair back with his hand, as he sings into the

a guy is moving his hands through his hair while he sings.

Models

CNN-LSTM Model

with sampling to minimize the cross entropy loss

CNN-LSTM Model with Attention

with sampling and attention to minimize the cross entropy loss

rryperparameters											
Model	batch size	hidden size	learning rate	layers	epochs	dropout	temperature				
CNN-LSTM	1000	1024	0.001	1	100	0	0.8				
CNN-LSTM with Attention	200	2048	0.001	1	100	0.2	0.8				

Future Work

To improve model performance:

Train the CNN-LSTM model on complete GIFs without the 10 frame cap

Encode the GIFs using a deeper CNN model like the ResNext-101 trained on the Kinetics dataset

Experiment with different types of attention and visualize what the model is attending to during decoding.

Analysis

The model produces good, complete, grammatically correct descriptions with few <unk> tokens

GT: three teenagers are dancing on a glass stage. CL: a group of boys are dancing in rhythm

...but it is not perfect

GT: a woman with glasses talked and moved her fingers CL: a man is talking to someone else indoors.

...maybe far from perfect?

GT: a girl is riding a skateboard down the street.

CL: a woman is holding a glass bong and exhaling smoke.

Thang Luong, Hieu Pham, and Christopher D. Manning. "Effective Approaches to Attention-based

Neural Machine Translation".

In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal. Association for Computational Linguistics, Sept. 2015, pp. 1412–1421.