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* Scientists utilize molecular dynamics (MD) and Brownian
dynamics (BD) to study dynamic or non-equilibrium
properties of materials.!

The principle challenge of MD/BD simulations is the
prohibitive computational cost to simulate phenomena that
occur at long time scales.

The goal is to predict the future states of simulations using
deep neural networks and bypass explicit computation of
every time step:
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Data & Features

14,400 simulation trajectories — list of particle positions
(x,y,z) at a given time step — generated using the
LAMMPS Molecular Dynamics Simulator.?

Simulation undergoes slow arrested phase separation with
different system parameters (volume fraction and
interparticle attraction strength).?
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Images rendered from simulation snapshots undergoing slow phase
separation, separated by 10° time steps. Particle colors indicate
number of contacts

Each input and output snapshot contains (x, y, z) positions
of 8,788 particles: i.e. 26,364 floating point numbers.
Particle motion is mildly stochastic and largely
deterministic; particles with few contacts are free to diffuse
while particles with many contacts move less.
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* Preprocess »

* Mean-squared error (MSE) for loss function.
* Use Adam optimizer with L2 regularization.
e Scan over architectures and hyperparameters.
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* Our model accurately predicts particle positions with small MSE.
Residual networks result in significantly smaller loss compared to simple plain
networks with only fully connected layers.

Plain (fully connected) Nets: FC-(# of Layers)

Epoch Number Residual Nets: Res-(# of Residual Blocks)

Bayes Error Quantification
» Different random seeds in simulations result in different
realizations of future states.
e Mean-squared difference of particle positions are
compared across simulated and predicted outcomes.
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L2 regularization (A = 0.0001) suppresses overfitting.

Learning rate a = 0.00005, achieves slow training but small loss.
Batch size 512 achieves a balance of speed and performance.
Residual block size with 3 fully-connected hidden layers each with
0O(1000) neurons provide accurate displacement predictions.
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Conclusions and Future Work

Successfully developed a deep neural network for predicting
future states in Brownian Dynamics simulations.

Utilizing a residual network structure to focus on displacement
significantly improves performance.

Future work should visualize and interpret what and how each
residual block is computing displacements.

Future work should extend current architecture for variable
number of particles.
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