Final Project. Google Landmark Recognition Challenge

Adil Nygaard
Stanford University
CS231N

adiln@stanford.edu

Abstract

Google’s landmark recognition challenge is an
unprecedented opportunity to build robust classifiers and
models to predict images of famous buildings around the
world. In this project, we have implemented a variety of
models in order to tackle this task, as well as used several
visualizations to qualitatively analyze our model. Maximum
activation, saliency maps and occlusion sensitivity show
that our model has learned to identify meaningful features
of the architecture of a class. For non-landmark images
classified to a landmark class, we propose using DELF[14]
to extract the landmark’s features and comparing extracted
architectural features to reject non-landmarks.

1. Introduction

In the Spring of 2018, Google released a challenge on
Kaggle, calling for a comprehensive -classifier on
recognizing and categorizing landmark images. These
images, are part of a wider initiative to create more robust
image classification systems.Described as the largest
worldwide dataset for recognition of landmarks, it contains
more than 2 million images. [2] These contain 30,000
landmarks from across the globe, approximately thirty
times more classes than in most publicly available datasets.
The size of the dataset has helped tackle a longstanding
problem of a lack of large annotated datasets.

2. Related Work & Literature Review

The quintessential problem of image classification is
one that has been studied extensively over the years, and
continues to be one of the core areas of focus in Artificial
Intelligence. We were thus able to consult a wealth of
literature with respect to techniques and approaches, and
analyze how these could be mapped to our problem of
classifying landmarks.

Li et al's paper on Landmark Classification sheds light
on the level of improvement that can be gained by
utilizing extra features such as captions and keywords.
[13] However, the classification approach based on k-
means clustering did not seem as promising as some of the
deep learning models we explored, partly because of we
hope to generalize our model to various landmarks. [13]
Images of landmarks can look fairly different based on
image capture conditions, so a deep learning-based
approach seemed to better tackle these variations.

We also considered approaches such as object-based
image retrieval, as researched by Philbin et al [15].
However, it appeared that, for now, these systems require
more research into evaluating the effectiveness of the

Uzair Navid, Aamnah Khalid
CS230

unavid@stanford.edu
aamnah@stanford.edu

ranking function “as the corpus size grows.” [15]
Similarly, Torralba et al’s binary code approach seemed
promising for general scene recognition tasks, but we did
not feel it would be the optimal tool for our problem. [18]
Part of the reason for this is that their objective is to
cluster semantically similar images, such as all images of
flowers, and includes techniques such as a pixel-wise vote
between the nearest neighbors. [18] We felt that this could
cause us to underfit the data, given that many landmarks
can be seen as being semantically similar architectures,
and occlusion could affect the pixel-wise voting
mechanism.

On the other hand, deep learning techniques such as
Deep Residual Networks seemed can able to handle over 1
million images, while maintaining an ensemble “3.57%
error on the ImageNet test set.”[10] Similarly, Xception
models also showed promising results on datasets
spanning 350 million images across 17000 classes,
highlighting a high propensity for generalizing. [8] These
are thus some of the models we decided to implement.

The success of the deep convolutional neural networks
in ImageNet classification led us to decide to use
ImageNet weights, which are already available in Keras,
to initialize the weights in our trainable models. [12]
Furthermore, we decided to use dropout as our
regularization technique, which drops nodes from layers
with a given probability, and can help prevent our network
from overfitting by preventing complex co-adaptations.
[17][11] Overfitting has been a concern for our project due
to the varying amount of dataset images available classes.

We studied visualization techniques next in order to do
find the best methods for our qualitative analysis of the
model’s results and high-level features. One approach
suggested by Erhan et al was to employ activation
maximization. [9] Matthew D. Zeiler and Rob Fergus note
that this method “find(s) the optimal stimulus for each unit
by performing gradient descent in image space to
maximize the unit’s activation”. [19] However, they
criticize it for requiring careful initialization and not
giving any information about the unit’s invariance. They
instead suggest using occlusion which helps check if the
network is truly identifying the location of the object
being classified or merely its surrounding context. [19]
Zelier et al., also use deconvolutional networks to
illuminate trends that activate particular units. However,
Zhou et al., in a more recent paper points out that this
approach only analyzes convolutional layers, “ignoring the
fully connected thereby painting an incomplete picture of
the full story.” [20] They instead support generating class
activation maps by employing global average pooling.

Since this approach seemed more promising and we had
limited computation power, we chose to implement it over
the former. Furthermore, saliency maps, described by
Simonyan et al., also involve deconvolutions so we
decided to implement them to compute “the spatial
support for a given class in a test image” by mapping
pixels in the input to the output. [16]

We also studied the use of an attentive local feature
descriptor suitable for large-scale image retrieval, referred
to as DELF (DEep Local Feature). [14] The CNN based
local-features extractor can be learned with weak
supervision using image-level labels only. Noh et al have
proven it to be robust against queries that have no correct
match in the database. The technique uses key-point
selection of densely extracted features to avoid clutter and
has been trained on the Google Landmark dataset with
higher precision than most local and global feature
descriptors. A major challenge with landmark recognition
is the lack of a good dataset of non-landmark images. Due
to its resistance to false positives, DELF can be used to
reject non-landmark images wrongly classified as
landmark images.

3. Data

3.1. Kaggle Dataset

The challenge was composed of a large dataset of holiday
photos that included famous landmarks, and the objective
was to classify an image to the correct landmark. The
dataset was rather large, originally containing over 14500
different classes (with each class representing a landmark),
and 1.3 million images in the entire training dataset. Image
capture conditions vary as the images include as noise,
“occlusions, different viewpoints, weather, and
illumination.”[2]. Some landmarks only had one or two
photos in the training set, and some test landmarks were not
contained within the training dataset at all. Common
occlusions included people and vehicles. The training
dataset was already labelled and could be used for Keras
models which require correctly labelled images. The dataset
was provided to us in a CSV file, which had the name of
each image, the website url to download it from and the
class that the image belonged to. We wrote a script to
download each image with the following labelled format:

[class number] IMG_[image number].jpg
with the class number and the image number being replaced
by their actual values respectively.

3.2. Our datasets

For training, we sorted the CSV file! to select 50 different
landmarks each of which had over 500 images in the
dataset. Comprising of 25,000 images, this dataset was the

! Refer to sort.py

larger of the two we trained on. We also had a smaller
dataset composed of 10 classes, each of which had twenty-
five or more images within them, leading to a dataset of
approximately one thousand images.

Using a sklearn [21] package, we split our data into
training, validation, and test sets. The test set was
approximately 15% of the dataset. We split the remaining
training set into 85% training and 15% validation. Our
script placed each of these into separate folders to allow a
flow from directories to data generators available in Keras.

3.3. Image Augmentation

To account for noise from image capture conditions, we
utilized zoom, horizontal flips, and rotations for image
augmentation.

4. Methods/Experiments
4.1. Variable Testing

We started tuning parameters on the ResNet model
available on the CS230 github [3]. We modified this
slightly to fit with our smaller 10 class dataset by changing
the way it reads in input, and then we used it as the first
experiment of our project. The metric we maximized for
all our experiments was accuracy. We tried changing
image size, batch size and the number of epochs. The
results were as follows:

64 x64 images:
batchSize = 32 epochs = 10
Train accuracy: 0.998 loss: 0.044
Dev accuracy: 0.835 loss: 0.493
Test accuracy: 0.849 loss: 0.486
batchSize = 32 epochs = 15
Train accuracy: 1.00 loss: 0.015
Dev accuracy: 0.858 loss: 0.434
Test accuracy: 0.891 loss: 0.410
batchSize = 16 epochs = 10
Train accuracy: 0.998 loss: 0.057
Dev accuracy: 0.827 loss: 0.563
Test accuracy: 0.866 loss: 0.503
128 x128 images:
batchSize = 32 epochs = 10
Train accuracy: 0.988 loss: 0.058
Dev accuracy: 0.866 loss: 0.497
Test accuracy: 0.857 loss: 0.408
batchSize = 32 epochs = 15
Train accuracy: 1.00 loss: 0.013
Dev accuracy: 0.843 loss: 0.520
Test accuracy: 0.857 loss: 0.432

input: | (None, 256, 256, 3)

input_1: InputLayer
put_ L IRPULLAYer o utput: | (None, 256, 256, 3)

input: | (None, 256, 256, 3)
D

separable_conv2d_1: SeparableC
|‘output: | (None, 254, 254, 32) |

input: | (None, 254, 254, 32)

max_pooling2d_1: MaxPooling2D
" -pooling2e t: Maxtootng 2l I stoat: [(None, 127, 127, 32)

[imput: | (None, 127,127, 32) |
|output: | (None, 125, 125, 64) |

[sepamble,cmwzd,z, rabloGomy2D | 2t | (None, 125,125, 60) | Flglll'e 2:

[‘output: | (None, 123,123, 64) |

] Layers in

[input: | (None, 123,123, 64) |

[‘output: | (None, 123, 123, 64) | custom
model

activation_1: Activation

| imput: | (None, 123,123, 64) |
g

lma"""’“""“m’z [‘output: | (None, 41,41,69) |

flatten_1: Flatten

We found a tendency to overfit with the larger number
of epochs. Increasing image size seemed to have no
discernable effect while being computationally expensive.
We speculated that this may be due to the way the model
was implemented, and it not necessarily was
disadvantageous to have a larger number of pixels, since
that provides more data to train on.

4.2. Model Testing

Trainin Test
ikl Accuracgy Accuracy Figure 1:
Separable Convolution 2D | 0.95 0.79 | Results
VGG 16 0.93 099 |onl0
ResNet 50 0.99 0.98 | Classes
Xception 0.96 0.90

We started testing models on the 10 landmarks dataset.
We created a custom model (see figure 1), implemented a
VGGI16, an Xception model[8], and a residual neural
network.[10] Each model used a Softmax classifier,
suitable for a multiclass problem. The activation value for
the i class is calculated using the following equation,
where x is the set of input values for the activation layer:

fzi) = Zei elri

All images were resized according to the input size of the

model we were training on which was 256x256 for all

models except the ResNet. This size seemed large enough
to accurately represent the complexities of images.

Dropout probability was kept at 0.4 for all models.

All of our models were constructed or derived from Keras.
A) The first model we created was a custom model
that we put together using various Keras layers. We
added dropout layers in order to prevent overfitting, and

we also created it out of several Separable
Convolutional layers. These differ from normal
convolutional layers as they convolute over each
channel of the input image separately, and then use each
of those to update the weights accordingly. This usually
leads to more accurate models, since it allows each
image to provide even more data per pixel than in a
normal ConvNet. We have also added the appropriate
pooling and activation layers in order to then get the
output to be a softmax layer where we can predict the
percentage that the given image would be in one of the
ten categories. We got the following accuracies.

0

15 »
Epochs

We originally had some issues with our model not
converging, and the validation accuracy staying low, and
jumping back and forth, but we determined it was a
learning rate issue, so we changed the learning rate to
.0001 from .001. Reducing the learning rate definitely
helped in getting the model to converge. We also
originally used ADAM optimization, but that did not seem
to actually help in any way, so we switched to RMSprop,
although we stuck to ADAM with the rest of the models
we were training.
B)Next, we trained on a VGG-16 [22]. It is comprised
of 16 layers: it has 3x3 convolutional layers stacked in
increasing depth and max-pooling layers combined to
make a deep convolutional base out of a small number
of layers. We added a dense layer and a dropout layer
to prevent. We initialized the weights of our VGG16 on
the ImageNet dataset. To save time, we only made the
last block trainable, thus exploiting the pre-trained
ImageNet weights. The validation and train accuracies
were fairly comparable:

x)
Epochs

Here we can see that due to the ImageNet already being
good weight initialization, accuracies increased quickly.
This was the best overall model for accuracy, with an
average training accuracy of 99.4% (see table for others).

C)We then trained an Xception model. The Xception
model is a modification of the Inception model, except
using depth-wise separable convolutions. The inception
module is to act as a “multi-level feature extractor” by
computing 1x1, 3x3, and 5x5 convolutions within the
same module of the network. Output from these filters is
then stacked along the channel dimension and before
being fed into the next layer in the network. [5] Like
other models, dropout and Softmax layers were added.
Only training the last layer gave this accuracy plot:

—— Training Accuracy
Validation Accuracy

5 10 15) 5 Y
Epochs

Training every layer in Xception caused overfitting:

086 —— Training Accuracy
Validation Accuracy

15]
Epochs

Validation and training accuracies approached similar

— Training Accuracy
Validation Accuracy

2 n
Epochs

trends as we trained on 50 epochs instead of 30:

D)For our Residual Network (ResNet) model, we used
the prebuilt model of ResNet50 from Keras, initialized
to ImageNet. On its own, ResNet50 is quite a deep
network with 50 residual layers, using skip connections
to avoid the problem of vanishing gradients. To fit this
to our problem, we made the last convolutional layer
trainable, added a 128-unit dense layer (ReLU
activation), and added an output layer with Softmax
activation with our data. This lead to the following
graph:

— Training Accuracy
Validation Accuracy

5 10 2 5 0

Epochs

The accuracy graph for the ResNet shows that the
validation accuracy takes some time before it starts to catch
up with the training accuracy. The deep residual neural
network seemed to take quite a long time to find the patterns
and weights necessary to make good evaluations on the
validation set, but once it learned those weights, it quickly
reached equality between the training and validation
accuracies.

For all of the above models, we also tested the test
accuracies and compared it to the average validation and
average training accuracies. All of that is shown within our
iPython notebook.

4.3, Large Dataset Model

Based on the earlier testing, we decided to
proceed with our larger dataset, consisting of the 50
classes each containing 500+ images in each. We used the
same learning rate as we had with the models on the
smaller dataset, and we also used the same ADAM
optimizer as we had previously. However, we increased
the batch size and the number of epochs and steps per
epoch. The batch size we increased to 32, from 20, since
even though increasing batch size can sometimes be akin
to decreasing the ability of our model to generalize, we
also thought that since we were drastically increasing the
dataset, it would be fine, and it turned out to be completely
alright. We also increased the number of epochs from 30
to 50, this is because the VGG16 comes pre-trained with
the ImageNet weights, and we realized that if we did not
retrain all of the blocks in the VGG16, then it is just
configured to the ImageNet dataset, and our maximum
activation pictures ends up resembling images from the
ImageNet dataset. We increased the number of steps per
epoch to 2000, this was so that each epoch had the
possibility of including every image within our training
set. Since with the batch sizes, and the number of steps per
epoch, then 64000 images would be selected each epoch,
which should accommodate for the size of the dataset.

Unfortunately, all of the above made it quite
computationally expensive, so we stopped training the
model after 15 epochs. Due to the tendency of the pre-
trained Keras models to over-fit, or to have such a high
validation accuracy from the start, that training on the
dataset would actually decrease the overall accuracy. In
order to combat this tendency to overfit, and to make the

VGG16 more accommodating to our dataset, we added
some dense layers, with a final softmax activation layer
outputting the prediction compared to our 50 classes.

In the graph below we see the training accuracy versus
the validation accuracy of the modified VGG16 model
trained on the large dataset of 50 landmarks. We were
only able to train it for 15 epochs, since it was taking too
long to compute, but we were able to achieve a validation
accuracy of above 75% and a training accuracy of above
60%.

075 = Training Accuracy e ® o ° L
® Validation Accuracy o ®
070 L]
°« ® 1
065 L4
L]
060
L
055
050
045
2 - 6 8 10 2 14 16

4 4. Visualizations

In order to demonstrate the visualizations and how
they would work on our dataset, we will take an
example landmark image. For our example, we will
take an image of the Berlin Cathedral, which was
classified as category 1553 in the original Kaggle
dataset, but was category 18 in our large dataset. We
used the Keras-vis [4] library in order to implement a
variety of visualizations.
Below we see the original example image.

We then reduce the ie to the 256x256. Here it is
represented side-by-side with another example image
within the same class.

The model correctly predicted the class when given the
inputs of the two example images.

We will then use this image and these images in
order to do visualizations of our model and how our

model interacts with the images. We will first try to
represent our filters in our model by using a maximum
activation image. The maximum activation image is
composed of the image that would maximize the filter
output activations of each filter layer in the model. It
can mathematically be represented by the vanishing of
the following expression [4].

JdActivation Loss

dinput

This produces an image that maximize our model’s
filters to predict the current class. This allows us to
understand what sort of input patterns activate a
particular filter. So we are maximizing with respect to
the input, as opposed to with respect to the output, and
we are not in fact visualizing the filters themselves, but
more accurately, the images and parts of the images that
would increase the activation of those filters to the
maximum extent. If we run this on the class of the
Berlin Cathedral and on our VGG16 model, we get the
image below.

Maximum Activation Image

0 D 100

We see in the above image that there seems to be some
patterns that resemble the domes of the cathedral and
the pointed spires on top of them. You can especially
see this resemblance to the dome in the quadrants
around 100,150, and 150,150. However, you can also
see some swirls and some things that look like spires
and domes from different angles, or shapes, or sizes.
These most likely come from the image augmentation
that we are doing to our training set. We are retraining
the filters within the VGG16, so that way the weights
can best reflect and accurately represent our dataset, so
those augmented images should be having their effect
on the weights and filters, and as such, are being
represented here on the maximum activation image.

As I stated before, when we tried to do the maximum
activation image without retraining the weights of every
block of the VGG16. We ended up getting an image
that closely resembled images from the ImageNet. This
is because the weights were initialized from the
ImageNet dataset, and therefore the maximum
activation image will be representative of the ImageNet
dataset as opposed to the dataset we were using.

Saliency maps are ways for us to see which pixels of
the image that the model is using in order to make a
classification. We compute the gradient of output

0 0

category with respect to input image. This should tell us
how output category value changes with respect to a
small change in input image pixels. All the positive
values in the gradients tell us that a small change to that
pixel will increase the output value. Hence, visualizing
these gradients, which are the same shape as the image
should provide some intuition of attention. [4]. This can
all be represented by the following expression

doutput

dinput
The saliency map is a good way to visualize which
regions of the image would cause the most change to
the output, if they were changed. i.e. it gives us a way to
see which pixels or parts of the original image are the
most “important” in coming to a classification or a
conclusion. Below we have the saliency maps of the
two example images. In order to produce these images,
we had to switch the final dense layer in which we
produce the outputs from a softmax activation to a
linear activation. It would have been suboptimal to get
the derivative of the output if we had left it as a softmax
layer. The first two saliency maps are using no modifier
for the backpropogation. If we look at the saliency maps
with no backpropogation modifiers, we see that the
pixels that are most represented are those around the
domes and spires of the cathedral. Therefore, these
pixels will be the ones that are most impactful on
making the final predictions and classifications.
Saliency Maps:

III

None

Although we can see thls pattern in the maps w1thout
backpropogation modifiers, we can see it more clearly
in those saliency maps that do contain backpropogation
modifiers. The most likely reason is, that we had
optimizers that make it much more complex in terms of
determining the direct impact that each pixel would
have on the output. The two backpropogation modifiers
we can utilize are “guided” and “relu”. Guided in this
case modifies backpropagation to only propagate
positive gradients for positive activations, ‘relu’
modifies backpropagation by zeroing negative gradients
and letting positive ones go through unchanged. [4].

guided

We can see the saliency maps with the guided and relu
modifiers have a clearer outline of the original Berlin
Cathedral, and we can see the outline of the domes and
the spires is the part of the original images that have the
most impact on the classification.

Our next visualization will not be reliant on the
gradient of the output, unlike the previous one. The class
activation maps visualize the attention over the
penultimate convolutional layer in respect to the input.
The intuition is to use the nearest Convolutional layer to
utilize spatial information that gets completely lost in
Dense layers. Those areas which are most important are
represented by a higher “heat map” designation, while
those that are garnering least attention from the
penultimate convolutional layer will be designated as
unimportant by the activation maps. We will also plot
three different pairs of Class Activation Maps, the first
pair being that without any backpropogation modifiers,
the second being the “guided” backpropogation modifier,
and the third being the “relu” backpropogation modifier.

Class Activation Maps:
LSS
- A
e
s

vanila

We see in the above maps that the areas that have the
greatest activation are the spires and dome, particularly
the area of the larger dome central to the Berlin
Cathedral. We also found that the backpropogation
modifiers tended to allow for the smaller dome to have
more attention than it would in the original image. The
“guided” backpropogation modifier also seemed to
allow for a greater area of maximum attention, whereas
the “ReL.U” backpropogation modifier seemed to
narrow the area of greatest attention on the original
dome, but still extend that area to include parts of the
smaller dome.

4.5. Occlusion Sensitivity

Our method systematically occludes different portions
of the input image with a black square and gets a
prediction from the model for the occluded image (Zelier
et al., 2013). Representing the probabilities calculated
after occlusions at different points as a heat map can help
illuminate which areas are crucial to the classifier. Lower
probability in an area means that occluding that portion
greatly reduces the probability of the image being
correctly classified and is therefore crucial to the model
identifying correctly. To visualize occlusion sensitivity,
we adapted open source code available on Github [6].

.j‘u‘i' I o

Smaller strides and occlusion windows proved to be
both computationally intensive and ineffectual in
highlighting high-level features. Larger strides and
occlusion windows however reduced the precision of our
analysis. Tuning the stride and occlusion window across
various values, we concluded that a window of 10x10
pixels with a stride of 5 on an image of size 256x256
provided the best results. We see that the area that is most
necessary to make a classification being that of the dome
and the spires, which seems to make sense in comparison
to our class activation maps and saliency maps, since the
dome and spires were the most pronounced there as well.

4.6. DELF

On the advice of the CS230 project TA, who was
advising my two project partners, we tried to see if we
could somehow implement DELF and use it as part of our
project. DELF compares local features between images
and finds the correspondences that occur within those.
Below we can see two example images of the Berlin
Cathedral. They have 39 inliers, which means 39 local
features that correspond between them. Despite the fact
the images are taken from two different angles and from
two different distances, we can still tell they are of the
same subject.

DELF correspondences

We thought that we could use the similarities of local
features as a way to distinguish between non-landmarks
and landmarks, but as the image below shows, DELF can
find inliers between two completely unrelated images. So
even though it is fewer inliers than the above image (6 as
opposed to 39). It still is not distinctive enough to utilize
DELF as part of our classification process.

DELF correspondences

According to these tests, it seemed somewhat unreliable
for the task of discriminating between non-landmarks and
landmarks. Although we had thought that we could use
DELF to classify to non-landmark images, there seem to

be too many inliers found between non-similar images to
accurately use it as a classification tool at this point.
Disregard clutter

5. Conclusion & Future Work

As stated earlier in our project, the VGG16
performed the best given both the larger dataset we used,
and the smaller dataset we used. If we could accurately
implement DELF in a computationally efficient way so
that we can classify if something is not a landmark. We
can create a dataset of non-landmarks, and use DELF to

find in-line features to compare the landmark category that

the non-landmark has been categorized as, and then
compare local features to try and then show that it is
actually not a landmark and not a member of that class.
There should be ways to implement DELF in such a way
that we are able to deal with the possibilities of non-
landmark images interacting with our classifiers. If we can
integrate that into our models, most likely our VGG16,
then we should be able to make an extremely robust
landmark classifier. If we also could, we would like to run
the VGG16 on the entire original dataset, for many
epochs, so that way we could get very well trained
weights, that wouldn’t be over-fitted to any dataset.

6. References:

[1] Abdelfattah, Abdellatif. “Image Classification Using
Deep Neural Networks - A Beginner Friendly Approach
Using TensorFlow.” Medium, Medium, 27 July 2017,
medium.com/@tifa2up/image-classification-using-deep-
neural-networks-a-beginner-friendly-approach-using-
tensorflow-94b0a090ccd4.

[2] Araujo, André, and Tobias Weyand. “Google-
Landmarks: A New Dataset and Challenge for Landmark
Recognition.” Google Research Blog, Google, 1 Mar.
2018, research.googleblog.com/2018/03/google-
landmarks-new-dataset-and. html.

[3] Genthial, G., Moindrot, O., & Nair, S. (2018, January
24). Introducing the Project Code Examples. Retrieved
from https://cs230-stanford.github.io/project-code-
examples.html

[4] Kotikalapudi, R. (2017). Keras Visualization Toolkit.
Retrieved from https://raghakot.github.io/keras-vis/

[5] Kaiser L. (2018) Tensorflow. DELF: DEep Local
Features. Retrieved from:
github.com/tensorflow/models/tree/master/research/delf

[6] Ludwig O. (2016) Sensitivity to Occlusion-Keras.
Retrieved from github.com/oswaldoludwig/Sensitivity-to-
occlusion-Keras-

[7] Eddins, Steve. "Network Visualization Based on
Occlusion Sensitivity." Mathworks Blog. December 15,
2017. blogs.mathworks.com/deep-
learning/2017/12/15/network-visualization-based-on-
occlusion-sensitivity/.

[8] Chollet, Frangois. "Xception: Deep learning with
depthwise separable convolutions." arXiv preprint (2016).

[9] Erhan, Dumitru, Yoshua Bengio, Aaron Courville, and
Pascal Vincent. "Visualizing higher-layer features of a
deep network." University of Montreal 1341, no. 3 (2009):

[10] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. "Deep residual learning for image recognition."
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770-778. 2016.

[11] Hinton, G. E., Osindero, S., and The, Y. A fast
learning algorithm for deep belief nets. Neural
Computation, 18:1527—-1554, 2006.

[12] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E.
Hinton. "Imagenet classification with deep convolutional
neural networks." In Advances in neural information
processing systems, pp. 1097-1105. 2012.

[13] Li, Yunpeng, David J. Crandall, and Daniel P.
Huttenlocher. "Landmark classification in large-scale
image collections." In Computer vision, 2009 IEEE 12th
international conference on, pp. 1957-1964. IEEE, 2009.

[14] Noh, Hyeonwoo, Andre Araujo, Jack Sim, Tobias
Weyand, and Bohyung Han. "Large-Scale Image Retrieval
with Attentive Deep Local Features." In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3456-3465. 2017.

[15] Philbin, James, Ondrej Chum, Michael Isard, Josef
Sivic, and Andrew Zisserman. "Object retrieval with large
vocabularies and fast spatial matching." In Computer
Vision and Pattern Recognition, 2007. CVPR'07. IEEE
Conference on, pp. 1-8. IEEE, 2007.

[16] Simonyan, Karen, Andrea Vedaldi, and Andrew
Zisserman. "Deep inside convolutional networks:

visualising image classification models and saliency maps
(2014)." arXiv preprint arXiv:1312.6034 (2013).

[17] Srivastava, Nitish, Geoffrey Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
"Dropout: A simple way to prevent neural networks from
overfitting." The Journal of Machine Learning Research
15, no. 1 (2014): 1929-1958.

[18] Torralba, Antonio, Rob Fergus, and Yair Weiss.
"Small codes and large image databases for recognition."
In Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, pp. 1-8. IEEE, 2008.

[19] Zeiler, Matthew D., and Rob Fergus. "Visualizing
and understanding convolutional networks." In European

conference on computer vision, pp. 818-833. Springer,
Cham, 2014.

[20] Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude
Oliva, and Antonio Torralba. "Learning deep features for
discriminative localization." In Computer Vision and
Pattern Recognition (CVPR), 2016 IEEE Conference on,
pp. 2921-2929. IEEE, 2016.

[21] Pedregosa, Fabian, Gaél Varoquaux, Alexandre
Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel et al. "Scikit-learn: Machine
learning in Python." Journal of machine learning research
12, no. Oct (2011): 2825-2830.

[22] Simonyan, Karen, and Andrew Zisserman. "Very
deep convolutional networks for large-scale image
recognition." arXiv preprint arXiv:1409.1556 (2014).

