Bitcoin Change Detection with Deep Learning
Peter Wang (pwang01@stanford.edu)
June 10, 2018

Introduction

Bitcoin, in its euphoric rise, has captivated millions with its ability to ascribe value to virtual bits in a
consensus protocol. However, criminals and those inclined to hide their identities (including Silk Road) have
flocked to Bitcoin because of widespread misconceptions about its anonymity and security. Fortunately,
clustering and embedding techniques in deep learning can hopefully cluster addresses into singular identities;
the revelation of identity of one of the addresses, then, reveals the owner of all of them. The question, then
arises: given the graph structure of Bitcoin transactions, can one cluster addresses into belonging to the same
owner? A successful model could undermine the promises of anonymity and assist authorities in prosecuting
those engaging in illicit activities, as well as augment companies’ risk management strategies. This particular
model aims to take Bitcoin transactions and identify the “change addresses,” which are outputs still controlled
by the owner of the inputs.

Related Work

Current work around change address detection involves the use of several human-generated heuristics. For
example, a change address is unlikely to be larger than the smallest input to the transaction (otherwise that
input would be obviated). Additionally, because most transactions are initiated by only one owner, it is a
reasonable assumption to cluster all of the inputs together as one owner. Then, transactions in the future
can be used to indicate that certain output addresses are of the same owner as input addresses, and that
gives a change address dataset. However, I was unable to find research done in the particular problem that
incorporated deep learning.

References:

1. http://www.atmos.umd.edu/~ide/data/teaching /amsc663/14fall /amsc663__14proposal _stefan__
poikonen.pdf 2. https://jonasnick.github.io/papers/thesis.pdf 3. http://www.livebitcoinnews.com/
bitcoin-address-clustering-new-heuristics-part-1/ 4. https://fc17.ifca.ai/bitcoin/papers/bitcoinl7-finalll.pdf
5. https://jonasnick.github.io/slides/2016-zurich-meetup.pdf

Dataset

The dataset is a raw MySQL database of lightly-annotated Bitcoin transactions on the blockchain. It includes
the inputs and outputs of every transaction, as well as some basic information about the amounts transferred,
and the past transaction history per address (created by MySQL through queries). Additionally, the dataset
contains some basic heuristic clustering information.

Approach

I first decided to try to solve the simpler problem of detecting the change address from the outputs of a
transaction. (In Bitcoin, all of the input Bitcoin to a transaction must be put into an output, with each
transaction having multiple outputs.) The neural network is a standard feedforward neural network, with
features such as input addresses, input amounts, input clustering information, output addresses, output
amounts, and whether the output addresses being used for the first time. However, the ordering of the
clustering information will affect the network; additionally, the output of the network is a sigmoid-activated
binary vector that corresponds to the input order of the output address features. This requires a degree

of permutation equivariance: swapping the order of the output address features (since this is arbitrarily
chosen), should swap the order of the output. Therefore, I decided to write a permutational layer based on
the idea in Guttenberg et al (https://arxiv.org/pdf/1612.04530.pdf), which involves parameter sharing. Any
arbitrarily-ordered input features are first fed into a permutation layer and then into fully-connected layers.
The loss function is a simple binary cross-entropy.

input_clusters_features: InputLayer

l '

permutation_layer_14: PermutationLayer

output_clusters_features: InputLayer]

permutation_layer_13: PermutationLayer

~N l '

concatenate_7: Concatenate

l \ /

flatten_12: Flatten { flatten_10: Flatten | flatten_11: Flatten

input_address_features: InputLayer

l output_address_features: InputLayer

permutation_layer_15: PermutationLayer per tion_layer_16: Per ionLayer

generic_features: InputLayer ‘ country_input: InputLayer

concatenate_8: Concatenate

dense_16: Dense

dense_17: Dense

dense_18: Dense

dense_19: Dense

dense_20: Dense

Results

From a naive counting of the correctly predicted zeroes and ones of the output, the network produces a
validation accuracy of 97%. Of course, because of the extremely large dataset and its dirtiness, this number
may not be representative of the change detection algorithm’s performance. Additionally, some of the cluster
information may actually give away the change addresses without having use in practice; this happens when
the change addresses are used in future transactions. Unfortunately, because of the massive amounts of
data involved, the database can only record the state of the transaction graph at a single, recent point in
time. However, the provider of the dataset, Blockseer, may be able to attempt to use the model for future
predictions, which could demonstrate its (in)efficacy.

Work to be Completed

Because most of the clustering so far is still produced by human-designed heuristics (and indeed, the change
detection model relies on some heuristic clustering to start with — to improve that clustering), the clustering
is time-consuming and inflexible. I plan to use GraphSAGE, an inductive representation learning algorithm,
on a subset of the Bitcoin transaction graph and use some sort of autoencoder to produce embeddings that I
can use to directly cluster transaction nodes in the graph, obviating the need for change detection and other
human-generated heuristics.

