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Abstract

Lesion segmentation is a time-consuming and labor-intensive process, and there
currently exists no accurate algorithm for automating this task. In this work, we
present a cascaded convolutional neural network trained using the ATLAS dataset
that represents the first steps toward the construction of such an algorithm. The
cascade is designed to split the task into a pipeline of simpler tasks, where each of
the individual components can be trained in parallel. The model is able to attain a
Sgrensen-Dice coefficient of at least 0.40 on most images for the second step.

1 Introduction

Stroke is one of the leading causes of death and disability worldwide, and large scale neuroimaging
studies have shown great promise in identifying markers for stroke recovery and improving the
lives of stroke victims. One of the biggest barriers for these studies is the difficulty of obtaining
accurate segmentation data (identifying the lesions that form in the brain after stroke), which is
a time-consuming and labor-intensive process. Developing an accurate automated segmentation
algorithm would reduce the need for manual segmentation. If an algorithm is produced, it would
facilitate the construction of larger neuroimaging datasets and assist radiologists in the reading room.

In this work, we outline the first steps toward creating such an algorithm. Formally, the input to this
algorithm is an image slice of the brain, and the output is a lesion mask, which indicates the pixels
where the lesion is located. We use a cascaded neural network, or two pipelined neural networks
operating in series, where the output of the first neural network is the input to the second. The first
neural network takes the input slice and is responsible for outputting a bounding box around the
lesion, while the second network takes the cropped bounding box as input and is responsible for
outputting the final lesion mask. The performance of the algorithm is measured by the Sgrensen-Dice
coefficient, which is commonly used for segmentation tasks and is given by
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where TP, FP, and FN are respectively the true positive, false positive, and false negative pixel counts
of the lesion mask predicted by the algorithm compared to the ground-truth lesion mask.

2 Related work

To train our model, we used the ATLAS dataset [Liew et al., 2017], which was released in February
2018 of this year. To our knowledge, there are no published research papers that have established a
benchmark on this task, and the gold standard for accuracy is still manual segmentation by hand.
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However, a similar task is the segmentation of brain tumors using the BraTS 2017 dataset [Menze
et al., 2015, Bakas et al., 2017]. For this dataset, cascaded convolutional neural networks have been
trained that achieve Dice scores of more than 0.70 [Wang et al., 2017, Chen et al., 2018]. The cascaded
approach is especially effective for the BraTS dataset because it is a multi-class segmentation problem
with three classes, which becomes three binary segmentation problems after being decomposed into
three pipelined networks. Although lesion segmentation is already a binary problem to begin with,
we think that the cascaded approach is still be useful for our task, because it decomposes the network
into simpler networks that can be trained in parallel. These approaches use volumetric input data,
which is likely to result in a better model because only using two dimensional slices as input cannot
model the relationships between adjacent image slices (we defer the use of volumetric input data in
ATLAS for future work).

Another network architecture that has been very effective at biomedical imaging segmentation is the
U-Net architecture, which has been shown to work very well with relatively few training images with
the help of data augmentation for learning invariances [Ronneberger et al., 2015]. We will use the
U-Net architecture for the second step in our cascaded neural network, to be described later.

3 Dataset and Features

ATLAS contains 229 brain scans and lesion masks from 220 patients. The scans are volumetric, and
presented as two dimensional 232 by 196 pixel input slices, as shown in Figure 1.

Figure 1: A brain image slice and its corresponding lesion mask

There are 43281 of these slices in ATLAS. Each slice can have one or more masks, depending on
the number of lesions that appear in the slice, and there are 11678 masks for all of the slices. We
consider each slice a data point for these experiments, and randomly split the data into training and
dev sets of size 38953 and 4328 respectively (approximately 9:1). !.

The slice is the input to the cascaded network as a whole, and the mask is the output. However, we
also needed to generate data for the bounding boxes, which would be used as the training labels for
the first neural network and the training input data for the second neural network. As we will describe
later, there are four possible allowed bounding box sizes. A program was written to process the
data and determine the smallest box size that would encapsulate the entire mask. The “ground-truth”
bounding boxes have the mask in the center. They are used to train the first network and are shown in
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Figure 2: Data preprocessing and augmentation. a) The “ground-truth” bounding boxes. b) Random
crops (left) and flips (right) used to augment the input examples to the second neural network.

In addition to the “ground-truth” bounding boxes that were generated for each of the 11678 masks,
random crops and flips were used to augment the bounding box input dataset for training the second

'Tt would better ensure that slices from the same scan were placed into the same set. However, this also
would have made the problem harder (doing it this way means that adjacent slices, which are likely to be similar,
can appear separately in the training and dev sets), and this work only represents a first attempt at this task



neural network so that it would learn translational and left-right flip invariance. Because most random
crops would not contain any lesions, the data processing was done to ensure that a substantial number
of crops contained an entire lesion mask by randomly sampling the boxes within the region of the
mask. Ultimately, the bounding box data is summarized in Table 1

Table 1: Bounding Box Dataset

| Size | Dimensions

“Ground-Truth” Boxes | Training Boxes | Positive Training Boxes |

S 12x 12 3416 501554 159275
M 32x32 3690 681605 337991
L 64 x 64 2644 613743 275410
XL | 160 x 160 1928 486551 152895

Training Boxes refers to the sum of the number of “ground-truth” and augmented boxes, while
Positive Training Boxes refers to the subset of Training Boxes that are guaranteed to contain the entire
lesion mask. Boxes are split between the training and dev sets based on the slices they correspond to.

4 Methods

The neural networks were constructed using TensorFlow [Abadi et al., 2015], and built on starter code
that was supplied by David Eng. The starter code provided included a neural baseline that achieved a
Dice score of 0.25 on the dataset when randomly split by slice.

In order to make the neural network cascaded, we originally planned to have two neural networks in
series. However, upon processing the dataset, we found that there was a wide range of lesion sizes,
from only a couple of pixels wide to occupying half the brain. Because the filters used in the UNet
architecture place constraints on the input image sizes, and we did not want to use a large bounding
box size for even the small lesions, we decided to instead train four separate U-Nets, which were
each responsible for a different size of lesion. The overall network architecture is shown in Figure 3

Small Crop Segmentation 1
Brain Image Bounding
Slice Boxes — UNet (S) \n
UNet (M)
Box Net Medium Crop Segmentation 2
UNet (L)
UNet (XL)

Figure 3: The overall network architecture.

As described earlier, the first neural network (BoxNet) is responsible for determining if there is a
lesion, how large it is, and its approximate location. Its architecture is similar to the convolutional
neural networks we described in lecture: it has two convolutional layers, two fully connected layers,
and an output layer that encodes the positions and probabilities associated with the bounding boxes.

The neural networks responsible for performing the segmentations used U-Net architectures, which
generally look like the network presented in in Figure 4.
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Figure 4: U-Net architecture, reproduced from Ronneberger et al. [2015]

These left side of this network is similar to a typical convolutional neural network, with convolutional
layers and pooling layers. However, instead of adding fully connected layers, the UNet supplements
the contracting network with successive layers where pooling operations are replaced by upsampling
to increase the resolution of the output. The layers form a “U”, where each layer on the same vertical
level has the twice the number of filters and half the image dimensions as the layer above it. The
output of the UNet has the same dimensions as the input, so it is ideal for segmentation. Because
of constraints with GPU and storage memory, the UNets were not constructed with enough layers
to make the image dimensions go all the way down to 1x1 in the last layer. Instead, the depth of
the UNet (how many levels) was varied so that we could select the best one for each lesion size. In
addition, the number of filters used in the convolutional layers was varied as well. We found that a
UNet of depth 2 worked best for the small lesions, and a UNet of depth 3 worked best for the others.
The total number of trainable parameters for each of the UNets and the BoxNet is summarized in
table 2.

Table 2: Number of Variables by Network

Network BoxNet UNet-S | UNet-M | UNet-L UNet-XL
Number of Variables | 4683312 | 402625 | 1861697 | 1861697 | 1861697

The loss function used was was TensorFlow’s built in weighted cross entropy loss with logits, which
is given by

Loss = targets x — log(co(logits)) x weights + (1 — targets) x —log(1 — o(logits))  (2)

Here, the logits are the inputs to the final sigmoid layers of the neural networks, and targets are the
target masks (both are matrices in this equation). We used a value of 100 for the weights. For BoxNet,
the bounding box is considered the target mask.

S Experiments, Results, and Discussion

Training was performed using the Adam optimization algorithm with gradient clipping by the norm
and run with a default learning rate of 0.001. Learning rate decay was applied by manually lowering
the learning rate when the loss started to stall. The minibatch size was 100 for all models, which was
selected because it was a compromise between the training speed and GPU memory limitations.
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Figure 6: A few samples from Tensorboard containing input cropped images (left), target lesion
masks (center), and predictions (right) for the baseline model (a), BoxNet (b), UNet-S (c), UNet-M
(d), UNet-L (e), and UNet-XL (f)

The medium, and large UNets were all able to achieve Dice scores of more than 0.5, while the small
UNet was able to achieve a dice score of 0.4. They were able to achieve some good segmentations, as
shown in Figure 6b, 6¢, and 6d. Unfortunately, the extra large UNet, which also took the longest to
train, tended to overfit the training set for all of the architectures that we attempted to use, and never
attained a Dice score of more than 0.1. This can be clearly seen in Figure 5, where the development
set error increases with the number of iterations, and Figure 6f, where the predicted mask shows signs
of overfitting. Unfortunately, we were also unable to optimize BoxNet, and its Dice score on the Dev
set was too low for Tensorflow to calculate. The few images it was able to predict bounding boxes for
were of the largest size, as shown in Figure 6b, because these were the easiest to determine.

6 Conclusion and Future Work

For this project, we were able to separate the segmentation process into two discrete steps, and train
both of them in parallel. Three of the five networks we trained produced modestly good results, while
the other two could be improved with more architecture and hyperparameter tuning, which we will
defer to later work. Interestingly, the designs used in our approach favor the smaller lesions, while
the baseline end-to-end network seems to perform better on the larger lesions. As shown in Figure 6a,
the baseline struggled with smaller lesions, which makes sense, since the larger lesions have a far
greater effect on end-to-end loss. In future work, we would also like trying to use volumetric data,
since it seemed to work well for other segmentation problems.



7 Contributions

This is a one person team, so all work presented here can be attributed to me. All given starter code
was developed by TA David Eng. Special thanks to him for setting all of this up!
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