AlphaPokerZero?
Deep reinforcement learning for imperfect
information games

Edgard Bonilla Divyanshu Murli Geoffrey Penington
Department of Physics Department of Physics Department of Physics
Stanford University Stanford University Stanford University
edgard@stanford.edu divyansh@stanford.edu geoffp@stanford.edu
Abstract

In this paper we propose a novel algorithm for learning approximate Nash equilibria
in imperfect information games with no prior domain knowledge. This algorithm
draws from the success of MCTS-based deep reinforcement learning algorithms in
perfect information games and is shown to approach Nash equilibrium at Leduc
poker. Preliminary tests are conducted for Limit Texas Hold Em. Our approach
never requires a complete traversal of the game tree and never stores an entire game
strategy. As a result it should scale successfully to very complex games.

1 Introduction

In recent years, deep reinforcement learning has revolutionised Al performance at perfect information
games. The same algorithm, AlphaZero, achieved superhuman, state-of-the-art performance in Go,
Chess and Shogi [1] [2]. Imperfect information games, where players have hidden private information
about the state of the game, pose a more difficult challenge. However, they more accurately reflect
real life, which, at least according to Von Neumann, consists mostly of bluffing.

In this paper we develop a novel algorithm that successfully uses deep reinforcement learning to
find an approximate Nash equilibrium in a simplified version of poker known as Leduc. Once
trained, a single neural network takes in the players’ information set and returns an approximate Nash
equilibrium strategy. Furthermore, we applied our algorithm to Heads Up Limit Texas Hold Em and
found positive preliminary results after limited testing.

Our main objective in this project is not to achieve a better approximation of the Nash equilibrium in
Leduc poker compared to some baseline state-of-the-art technique. Classical algorithms can achieve
a far higher precision with far less computational power than any deep reinforcement learning based
method could ever hope to [3]. The point is to demonstrate a proof-of-concept for our algorithm and
show that it successfully converges.

The main value in our algorithm is that it never performs a complete traversal of the game tree and
that we never store an entire strategy. Additionally, similar to Alpha Zero, most of its components
are highly parallelisable. As a result it should scale successfully to games such as 6 Max No Limit
Texas Hold Em, where computers still cannot achieve expert human level performance, even if the
computational power required to do so is beyond our resources. Our performance at Leduc was
comparable to the main existing deep reinforcement learning algorithm for imperfect information
games; however the exact performance at Leduc is not necessarily a good barometer for performance
at much more complex games.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



2 Related work

The dominant technique used in computer poker is counterfactual regret minimisation (CFR) [4],
a classical reinforcement learning algorithm. This has achieved great success - recently achieving
superhuman performance in Heads Up No limit (HUNL) Texas Hold Em [5]. However CFR relies on a
complete traversal of the game tree, which becomes computationally challenging, or even impossible,
as the game becomes larger. In particular, superhuman performance has yet to be achieved in No
Limit Texas Hold Em with more than two players, which is probably the most widely played version
of poker. DeepStack, which is essentially the state of the art in computer poker, does use a deep
neural network, pretrained using supervised learning of CFR searches of randomly chosen poker
positions, to provide a policy heuristic that allows them to depth-limit the CFR search [6]. Overall,
however, imperfect information games have seen far less impact from the deep learning revolution
than their perfect information cousins.

The most significant implementation of deep reinforcement learning for imperfect-information games
was done by Heinrich and Silver [3][7] with considerable success. Their approach, which they call
Neural Fictitious Self-Play (NFSP), calculated a “best response” - an e-greedy strategy based on a
deep Q network, as well as an “average strategy” trained to approximate the average best response
policy over the entire training time. During the self-play agents played a mixture of the best response
and the average policy so as to increase the stability of the learning. The average policy was found
to successfully converge to a Nash equilibrium in a simple version of poker known as Leduc and
achieved close to state of the art performance on heads up limit Texas Hold Em. Our algorithm aims
to build on this success.

Our algorithm makes use of the insights of both NFSP and AlphaZero. Monte Carlo Tree Searches
(MCTS), which lie at the heart of the success of AlphaZero, do not in general converge to Nash
equilibrium for imperfect information games, although they can quickly learn relatively strong
strategies [8]. However here we only use it for the much more limited task of finding a best response
for a given fixed strategy. In this sense, the task is much more similar to planning in Partially
Observable Markov Decision Processes [9], where an agent samples a probability distribution of the
unseen information prior to sampling the game tree.

3 Dataset, Features and Methods

Our algorithm makes use of two neural networks: a policy-value network (Fig 1a), similar to the
one used in AlphaZero, and an opponent range network (Fig 1b). The policy-value network has two
outputs: a policy p, a normalized vector containing the probabilities of performing an action (raise,
check or fold), and a value v for the given information state. This value is normalised so that the
value of folding is zero and winning the pot corresponds to a value of one.

The opponent range network outputs a normalized vector giving probability that the opponent holds
each card. This is a vector of length 3 for Leduc and a vector of length 52 for Texas Hold Em.

The inputs for the neural networks are representations of the information states for each player. The
games of poker consist of multiple rounds where the players can take different actions, namely
{raise,check,fold}. At the end of each round public card(s) are revealed. In Limit hold’em games the
number of bets are constrained to be a set amount per round. We therefore encode the input data as
follows:

e Betting History: Contains the action made by a player during a round after some number
of bets have happened. For Leduc it is two players, two rounds, the raises per round can go
from zero to two, and three actions. Since these are heads-up games, the game ends as soon
as a player folds, so we don’t need to encode that action in the history of play. The betting
history is therefore stored in a multi-hot array of size 2 X 2 X 3 x 2 x 2 = 24. For Limit
Texas Hold Em, there are now four rounds with at most four raises per round. The history
array size is therefore 2 x 4 x 5 x 2 = 80.

e Public cards: One (or multi-) hot vector for the public card(s). For Leduc there are three
different cards, while for Limit Texas Hold Em there are 52. If no public card has been
revealed, all elements of the public card array are zero.



———————————————————————————————————

O Policy
- . O

Player cards

O Opponent Cards
Player cards O

.
: e O —
O Softmax History Q '
History . Q ' Q . \8p
O Belu x4 O Relu x 4 Relu

Public Cards fully connected

Softmax

Public Cards fully connected (linear at training time)
(a) Opponent range network, used to predict a prob- (b) Policy value network, used to predict a player
ability distribution of the opponent’s card(s) given average strategy given the player cards, history and
the player’s card, history and public cards. public cards.

Figure 1: Opponent range network (left) and policy value network (right) as implemented for Limit
Texas Hold Em

e Player cards: This is similar to the public cards, one hot vector of size 3 for Leduc, and a
two hot vector of size 52 for Texas Hold Em.

If we flatten and concatenate this information, the input of the neural networks is a vector of length
30 for Leduc and a vector of length 184 for Texas Hold Em.

In Texas Hold Em the opponent range network contains an additional input vector of length 52, This
input vector is set to zero when predicting the first card held by the opponent, and is a one hot vector
corresponding to the first card that was sampled when predicting the second card. This technique is
similar to the techniques used in language sampling models, where the sampled word is used as an
input predict the next word. However we do not use a memory state, as in an RNN; instead we just
input the player information set to the network on both occasions.

The dataset used was generated from self play between poker agents, all using the same neural nets.
Most of the time agents play according to the neural net policy p; however with some probability
(n = 0.1) they play an approximate "best response" strategy to the policy p. This is known as
anticipatory learning [10] and is used similarly in NFSP.

When playing a "best response” strategy, an agent uses a policy m recommended by a Monte Carlo
tree search (MCTS) adapted to imperfect information states:

Within the MCTS, the opponent card(s) are sampled using the opponent range network, and the
opponent plays according by Monte Carlo sampling of the policy p. Meanwhile, the agent plays
according to an upper confidence bound strategy guided by p, a greedy strategy that maximises

p(s,a)
1
G0+ 1—|—Nsa) )

where (s, a) is the average value achieved by doing action « in state s, N (s) is the number of times
the state has been visited and N (s, a) is the number of times action a has been taken. The returned
strategy 7 is proportional to N (sp, a)l/ 7, where T is a tunable temperature parameter and sy is the
root node where MCTS was called. The value v from the neural network is used to bootstrap the
search.

If the temperature is 7 less than one, and if the values produced by each strategy are similar (as
should be the case close to Nash equilibrium), then this best response strategy would be excessively
biased in favour of the action with the largest p and could push the average strategy away from Nash
equilibrium. As a result the initial policy at the root node was replaced with p”.

The "best response" strategies for the entire history of self play are stored on a reservoir R, that is
used to train the policy p of the neural network with a cross entropy loss. This approximates fictional
self play (FSP) where agents play the true best response to the previous average strategy, and where
convergence of the average strategy to a Nash equilibrium is guaranteed [3]. Reservoir sampling [11]
is used to ensure R, contains an even distribution of the training data.

The value estimate v and opponent range estimate are trained using a smaller dataset D,, . based on
all recent games (regardless of which policy was used). The value estimate is trained to predict the



actual outcome of the game and uses an L2 loss. L2 regularisation was used to prevent overfitting,
giving an overall loss function

Jpg = _aZleogp+Z(v—U*)2+)\1 ZHWH2 @

where p and v are the outputs of the neural network, 7 is the best response strategy produced by the
tree search, v, is the value based on the actual game result and o and \; are hyperparameters. m and
n range over a minibatch of examples from R, and D, . respectively.

The opponent range network is trained to predict the actual opponent card(s) and uses a cross entropy
loss. For Texas Hold Em, each minibatch contains both samples where one opponent card is given
and the network is trained to predict the other card and samples where the network is only given the
player information set and is trained to predict either of the actual cards. L2 regularisation was used
to prevent overfitting, giving an overall loss function

Jop == _cllogé+ XY [lwl? 3)

where ¢ is the neural network estimate of the opponent cards and c is the ground truth opponent cards.

4 Experiments/Results/Discussion

The neural networks were trained from an updated R, and D, ., by performing 128 steps of training
with minibatch size 128 after each episode of self play. An episode consisted of 128 full games
between the agents. We used the Adam optimisation algorithm with different learning rates depending
on the experiments. The L2 regularisation parameters were set to A\; = Ay = 0.01, and o = 10.

4.1 Leduc Poker

For Leduc Poker the policy value network both had two hidden layers with 256 and 128 units. The
learning rate for the policy value network was set to 0.0005, and to 0.005 for the opponent range
network after some initial tests.

We use exploitability as a metric to evaluate the performance of our algorithm. In a two player zero-
sum game, the exploitability of a player strategy is the maximum average value that any opposing
strategy can make from it. It is a reliable metric for convergence; a strategy with an exploitability of
2¢ is a e-Nash Equilibrium strategy.

We performed three experiments as shown in Fig 2a, two with constant temperatures (7 ~ 0 and
7 = 1), and one with a temperature decay such that 7 < 7/1.005 on each episode of training. As
expected, the zero-temperature case converges the fastest; this is equivalent the player playing best-
response selecting the most probable action rather than sampling from its entire strategy distribution.
The necessity for exploration in the MCTS is leveraged by using p” in the root node.

We observe that for low temperatures the algorithm is successfully converging to a Nash equilibrium
strategy. More specifically, the 7 = 0 achieves an exploitability of < 0.15 after 5000 episodes of play.
This performance is comparable to the results from NSFP ([7], Fig 1a) after the same amount of self
play game data, which is the closest thing we have to a baseline model given that Leduc poker itself
is a game where classical algorithms will always vastly outperform deep reinforcement learning.

4.2 Heads Up Limit Texas Hold Em (LHE)

For this experiment, the policy value network both had four hidden layers: three with 256 units and
the last one with 128 units. The learning rate for the policy value network was set to 0.0005, and to
0.0005 for the opponent range network after some initial tests.

The results shown in Fig 2b correspond to the preflop strategies learned after 2000 episodes of
training. The algorithm is already able to discern which cards have the highest value in the game,
also has an increased propensity to raise when it has pairs, shown in the diagonal of the diagram.
This is achieved despite no preprocessing in the data to indicate the card number or suit.

After this relatively small amount of training, the neural net was already able to beat very simple
strategies such as always calling, although there was considerable noise given the number of games



Exploitability

1000 2000 3000 4000 5000
Episodes

(a) Performance at Leduc Poker with the
MCTS temperature parameter setto 7 = 1
(blue), 7 = 0 (yellow) and gradually decay-
ing from 7 = 1 (red). Zero exploitability cor-
responds to the Nash equilibrium solution.

Figure 2: Exploitability over 5000 training episodes on Leduc (left), and colour plot strategy shown

Suited
A KQ J 1098765432

Unsuited

(b) Preflop strategy for Heads Up Limit Texas
Hold Em after 2000 iterations. Red indicates
raise, green call and blue fold. The upper
right triangle shows the strategy for suited
cards, the lower left triangle shows the strat-
egy for unsuited cards.

after 2000 episodes of training of Heads Up Limit Texas Hold Em (right).

that we were able to simulate. Gameplay against humans was done, but would require hundreds of
times more games to be statistical significant.

Given the training required for NFSP to achieve high performance at LHE, we would need to train
much longer on GPUs for our algorithm to have a chance of holding its own against a state-of-the-art
poker bot such as the Cepheus project [12], even if we had the computational power to measure that
performance with any degree of precision.

5 Conclusion/Future Work

Our algorithm successfully converged to an approximate (0.07) Nash equilibrium in Leduc
Poker. It provides an alternative approach to NFSP for deep reinforcement learning in
imperfect information games.

The performance at Leduc Poker was similar, yet not quite as high as for NFSP. However,
as we have optimised hyperparameters and algorithmic details, the performance of our
algorithm has steadily improved. We are confident that further performance gains are
possible.

MCTS algorithms are most effective for very deep games. This suggests our algorithm
should be even more useful in ‘real poker’, and especially in even deeper imperfect informa-
tion games such as various board games.

Our algorithm appears to be learning Heads Up Limit Texas Hold Em successfully but we
were limited in our ability to measure performance, because of the time required to simulate
sufficient games given our limited computational power.

Future plans include continuing to optimise performance on Leduc poker. Just in the last
few days, various optimisations have improved the exploitability achieved by a factor of
two.

We will also look to test our algorithm’s performance at Limit Texas Hold Em against
state-of-the-art poker bots.

We can apply our algorithm to Heads Up No Limit Texas Hold Em, where superhuman
performance has only been achieved in the last year, as well as poker games with more than
two players, where humans still reign supreme.

Finally, the algorithm can be easily adapted to various other imperfect information games,
particularly games where very deep tree searches are vital to success.



6

Contributions

Every team member contributed to the project in numerous ways. We did not keep track of who
contributed exactly which piece of code and everyone was involved with every major part of the
project.

References

(1]

2

—

(3]

(4]

(53]

[6

—_

[7

—

[8

—_—

[9

—

[10]

(11]

(12]

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human
knowledge. Nature, 550(7676):354, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form games. In
International Conference on Machine Learning, pages 805-813, 2015.

Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret minimization
in games with incomplete information. In Advances in neural information processing systems, pages
1729-1736, 2008.

Noam Brown and Tuomas Sandholm. Libratus: the superhuman ai for no-limit poker. In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017.

Matej Moravcik, Martin Schmid, Neil Burch, Viliam Lisy, Dustin Morrill, Nolan Bard, Trevor Davis,
Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science, 356(6337):508-513, 2017.

Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-information
games. arXiv preprint arXiv:1603.01121, 2016.

Johannes Heinrich and David Silver. Smooth uct search in computer poker. In IJCAI pages 554-560,
2015.

David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances in neural information
processing systems, pages 2164-2172, 2010.

Jeff S Shamma and Giirdal Arslan. Dynamic fictitious play, dynamic gradient play, and distributed
convergence to nash equilibria. IEEE Transactions on Automatic Control, 50(3):312-327, 2005.

Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software (TOMS),
11(1):37-57, 1985.

Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit hold’em poker is
solved. Science, 347(6218):145-149, 2015.



