Predicting U.S. Political Party Affiliation on Twitter

Catherine Lee, Jacob Shiff, Sridatta Thatipamala
Department of Electrical Engineering, Stanford University
Graduate School of Business, Stanford University
Engineering, Google
{catfranl, jshiff, sthatip}@stanford.edu

Abstract

With a multitude of divisive issues in today’s political climate, politicians have
migrated to Twitter to communicate publicly with their constituents and other
politicians. In this paper we develop various neural network algorithms to predict
users’ U.S. political party affiliation based on singular tweets. We choose to focus
on politicians’ tweets, for which we have ground-truth labels of political party
affiliation. We demonstrate that a GRU model can classify the party affiliation of
tweets with 91.6% accuracy (and 8.4% error rate, close to the estimated Bayes
error of 5%). Our model can be used to facilitate cross-party dialogue amongst
Twitter users in an effort to minimize the national political divide.

(Github repository: https://github.com/sridatta/cs230).

1 Introduction

Twitter has become a popular platform for many politicians. Through tweets, retweets, @mentions,
and #hashtags, politicians are able to respond quickly and directly to their constituents. While Twitter
enables this dynamic discourse on political issues, it also lends itself to intellectual isolation, with
limited dialogue across parties.

In this paper, we develop a binary classification model to identify a US political figure’s political
affiliation (not explicitly captured by Twitter) based on a single tweet. The input to the model is a
sequence of words or tokens. We then use a recurrent neural network (RNN) to output a binary class
label which predicts the tweet author’s political party. With this model, we aim to detect political
affiliation from a text of 140 characters or fewer. This classification can ultimately be used to facilitate
cross-party dialogue, expose users to content from the opposing party, and develop other applications
to moderate political discourse in the United States.

2 Related work

Our project is based on the assumption that Twitter discourse is highly partisan. To show the
assumption has a credible basis, we present a study done by Conover et al. (2011), which uses a
“combination of network clustering algorithms and manually-annotated data” to “demonstrate that the
network of political retweets exhibits a highly segregated partisan structure, with extremely limited
connectivity between left- and right-leaning users” [10].

Many researchers have used neural networks to study political language and identify political bias in
various texts. A basic baseline for evaluating political bias uses traditional surface lexical modeling, or
bag-of-words representation, which is what Gerrish and Blei (2011) used in predicting Congressional
voting patterns based on their political leaning and written bills [6]. A group at the University of
Maryland focused challenging the bag-of-words representation for political ideology detection with
an RNN model [3]. By using RNNs, they were able to able to capture syntactic structure and semantic

CS230: Deep Learning, Spring 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

meaning. This provides an advantage in comparison to the bag-of-words model, as phrases may take
on entirely new meanings from individual words alone. They demonstrated that compositionality
from the RNN increased performance and allowed the model to outperform the bag-of-words model.
From this, we decided to use an RNN as our baseline model. From there, we experimented with
LSTM and GRU models.

Makazhanov and Rafiei (2013) focused on predicting political preferences of Twitter users [7].
They based their predictions on a user’s language-model alignment with that of a political party’s
and evaluated their predictions based on the Alberta 2012 general election. With an F-measure
score, their model outperforms the aforementioned sentiment and text classification approaches. A
major difference between their model and ours is their construction of a user’s profile based on
their interactions with different political parties and evaluation of positive/negative terms during
interactions.

In our own model, as inputs, we used the data collected by computer scientist at Purdue University
Kristen Johnsen for her project on “Leveraging Behavioral and Social Information for Weakly
Supervised Collective Classification of Political Discourse on Twitter” [1]. Johnsen was more
interested in using neural networks to frame Twitter issues, as brought forth by politicians. However,
the data gathered was useful as each tweet was already labeled with party affiliation.

3 Dataset and Features

We used the Congressional Tweets Database [1], a database of Twitter tweets of the 114th U.S.
Congress members from 2014 through 2017, to develop our model. The dataset includes tweets on
topics like gun control, terrorism, abortion, and immigration, and excludes campaign tweets and
location updates. The database includes 86,472 tweets. The classes are roughly evenly balanced,
with 45,023 (52%) tweets from Republican politicians and 41,619 (48%) tweets from Democratic
politicians.

Preprocessing. We enriched each entry in the Database, which included the Tweet ID and party
affiliation (Democrat or Republican), with the full tweet text using a Tweet Downloader [2]. We then
ran the dataset through the following preprocessing steps: (1) tokenizing text by splitting by space;
(2) padding sentences to a maximum of length of 32 words; (3) cleaning punctuation from ends of
words; and replacing all links, hashtags, and “@” mentions with placeholders .

The final step was necessary because the vocabulary of the tweets was too large and sparse, with
many hashtags and links being used only a handful of times. After replacing these one-off tokens
with placeholders, the total vocabulary size after preprocessing was 18,713.

We split the 86,472 entries into training, development, and test datasets, as seen in Table 1.

Data set Number of examples Percentage of dataset
Training 60,649 70%
Development 12,996 15%
Test 12,997 15%

Table 1: Data split for our model

4 Methods

Input. The input to our model was a tweet, which we processed into a sequence of tokens. Neural
networks operate on vectors so we had to convert each token into a vector. We accomplished this by
using word embeddings. Word embeddings “represent (embed) words in a continuous vector space
where semantically similar words are mapped to nearby points” [8].

We initially used a pre-trained GLoVe embedding [9], which learn word embeddings by predicting
the number of times a pair of words occur together in a “context window”. Specifically we used
glove.6B.300d, which maps a vocabulary of 6 billion words (from Wikipedia) into a 300-dimensional
vector space. 82% of our tweet vocabulary had a matching vector in the GLoVe matrix. The remaining
18% of words were mapped to randomly generated vectors.

Model. Since our inputs are sequences of words, it was natural to use a recurrent neural network as
the basis for our model. An RNN is a neural network that operates recursively, in a loop. At the core
of the RNN is a “cell” which maintain a state vector h. At each time step, it accepts an input <>
and previous state h<¢~1> to produce a new state h<*> and new output y<*>.

>% 5@

Concat state

x<0> X<1> “ee X<

Figure 1: Final Model architecture (Bidirectional GRU model with fully-connected layer + sigmoid)

We first developed our baseline model to establish a benchmark for accuracy. For our baseline, we
used a single-unit RNN with a state size of 128. This baseline model achieved a test set accuracy of
77.2%.

To reduce the avoidable bias, we experimented with several more sophisticated models, including
RNNs with LSTM cells and multi-layer RNNs. We ultimately selected a bidirectional GRU architec-
ture. This architecture uses two GRU cells. A GRU cell is a type of RNN cell which addresses the
“vanishing gradient” issues of a vanilla RNN. The “vanishing gradient” problem causes recent inputs
to have much greater influence on the output than inputs seen in previous timesteps. GRU addresses
this by updating the cell’s hidden state to more carefully preserve existing state which still taking into
account new inputs.

The first step (“reset”) selectively forgets parts of the hidden state. The second step (“update”) sets
new information into the hidden state.

Zt = O'(W(z).ilit + U(z)ht_l)

re = o(Wz, + UDhy_y)
h; = tanh(Wf + 71 © Uht—l)
hi =20 h—1+ (1 —2) @ h;

The model is “bidirectional” because one GRU unit processes the sequence of tokens from in the
forward direction (from t=1 to t=k) while the other GRU unit processes the sequence in reverse (from
t=k to t=1). This architecture allows each input token to influence the tokens that come after it (in the
forward layer) as well as those that come before it (in the backward layer).

To improve model performance even further, we allowed backpropagation to update values of the
embedding matrix itself (a technique which we refer to in this paper as “trainable embeddings”). This
technique allows the embedding matrix to adapt to the text distribution of political tweets, rather than
remain static on the dataset it was initially trained on.

Output. After feeding the input sequence through the bidirectional model, both GRU cells have a
final hidden state. We can treat this state as a vector representation of the entire tweet. To produce
a binary classification output, we concatenate each GRU unit’s 128-dimensional state vector into a
single 256-dimensional vector. Then we use a fully-connected layer to project this vector into one
dimension, and pass it through a sigmoid activation to get a (0, 1) output.

Loss, Optimization, Hyperparameters. We used a cross entropy loss function because it is histori-
cally a good loss function to optimize accuracy of a binary classification problem.

L(g,y) = —(ylog(9) + (1 — y) log(1 - 9))

We used an Adam optimizer [11] to improve convergence of loss function during training. Adam
is an adaptive learning rate algorithm. It adjusts per-parameter learning rates based on the moving
average of gradient updates (first moment) and squared gradient updates (second moment).

Regularization. To reduce the model’s variance (as measured by the difference between training and
test accuracy), we applied two regularization techniques: L2 regularization and dropout. We applied
L2 regularization to the fully-connected output layer and to the updates to the embedding matrix.
L2 regularization prevents overfitting by adding the L2 norm of the model parameters to the loss
function. This incentivizes the model parameters to be close to 0. We applied dropout to the GRU
hidden state. Dropout randomly shuts off or masks parts of the model’s activation during training
time. This has a regularizing effect because the model must learn to represent the same information
using multiple different parameters.

We tuned the model’s hyperparameters by performing a random search of the hyperparameter space.
We searched for L2 lambda on a logarithmic scale from 10e-4 to 10e-1, and dropout keep_prob on a
linear scale from 0.4 to 0.8. The following are the hyperparameters used in our final implementation.

Learning rate Batch size Hidden units Dropout rate (keep_prob) L2 regularization (lambda)

le-3 64 128 0.67 0.0438

Table 2: Hyperparameters used in final LSTM implementation

S Experiments, Results, and Discussion

After training each model for 10 epochs, we were able to achieve a 91.6% test set accuracy using the
bidirectional GRU model.

Model Training accuracy Testing accuracy
0. RNN 77.6% 77.2%
1. GRU 91.0% 86.4%
2. GRU (with trainable embeddings) 99.4% 87.9%
3. bi-directional GRU 95.9% 88.7%
4. bi-directional GRU (with trainable embeddings) 98.3% 91.6%

Table 3: Training and testing accuracy based on model

With a test set of n = 12,997 examples, Table 4 shows the results of our model in a confusion matrix:

Predicted: Democrat (0) | Predicted: Republican (1)
Actual: Democrat (0) True Democrat = False Republican = 6217 (47.8%)
5632 (43.3%) 585 (4.5%)
Actual Republican (1) False Democrat = True Republican = 6779 (52.2%)
512 (3.9%) 6267 (48.2%)
| 6144 (47.2%) \ 6852 (57.7%) I

Table 4: Confusion matrix of our results

Precision: 91.7% ‘ Recall: 90.6% ’ Accuracy: 91.6%

Table 5: Final metrics

To analyze misclassified tweets, we performed an error analysis on 50 misclassified tweets (see Table
6 for a list of examples). Of those 50, we found that 10 tweets (20%) were entirely non-partisan and
did not provide any signal about political affiliation. We were able to manually classify 22 (44%) of
them correctly and got 18 (36%) of them wrong. Since our classifier had a 8.4% error rate and we
(average of expert humans) could only reduce this error by 44%, we believe the Bayes error rate for
this problem to be close to 4.7%.

Original tweet Prediction Actual Analysis

joining @TeamCavuto at 4:15 Democrat Republican @FoxNews is indicative of Re-

on @FoxNews to discuss the publican but we replaced all “@”
burwell nomination hearings mentions with placeholders.
#TSonTV

saddened by the violence in col- Democrat ~ Republican Non-partisan tweet which
orado my thoughts and prayers does not indicate any political
go out to all the victims and their affiliation

families of this senseless tragedy
i call on speaker boehner to con- Republican Democrat Mention of “Speaker Boehner’

5

vene the house to debate and which might not occur fre-
vote on syria by wednesday of quently enough to learn a strong
next week signal

this SCOTUS ruling creates even Republican Democrat Reference to a context (“SCO-
more uncertainty for americans TUS ruling”) which lies outside
trying to comply w the ACA. the tweet itself.

Table 6: Examples of misclassified tweets and error analysis

The algorithm was impressively accurate in classifying tweets, identifying subtle nuances in language
between Republicans and Democrats. Table 7 lists a few examples of tweets that were correctly
classified:

Tweet Prediction

Obamacare continues to threaten seniors en- Republican
rolled in popular MedicareAdvantage pro-

gram

no child should end her life cold amp alone Republican
struggling for her last breath inside an abor-

tion clinic

by a show of RTs, who thinks Congress Democrat
should be focusing jobs instead of repealing

Obamacare for the 37th time

house gop once again blocks vote to pre- Democrat
vent individuals on terrorist watch list from

buying guns

Table 7: Examples of correctly classified tweets

We hypothesize that the model, with a training error of 1.7% (above our estimated Bayes error), is
overfitting. We employed regularization techniques like dropout and L2 regularization, but additional
regularization techniques like early stopping could potentially further minimize overfitting.

6 Conclusion/Future Work

A limitation of our approach is that we were unable to test our model on non-politician users, because
Twitter does not collect political party affiliation data. It is possible that the language distribution of
politician’s tweets is different than that of civilian users and that our algorithm would not effectively
generalize to a civilian population. Future work could include surveying Twitter users to collect
political party affiliation. With this information, we could assess the accuracy of our algorithm on a
civilian population and further tune the algorithm for civilian tweets.

Another limitation we would like to address is our model’s inability to use tweet history in its
prediction. Our model would likely improve if we inputted several tweets (simulating a tweet history),
rather than a single tweet. A simple approach would be to use our existing model to classify individual
tweets and feed those classifications into another model to make an aggregate prediction.

7 Contributions

All members contributed equally to this paper. Sri took the lead in deploying the first iteration of the
model. All members assisted with subsequent iterations and paper and poster write-ups.

References

[1] K. Johnson, D. Jin, D. Goldwasser. Leveraging Behavioral and Social Information for Weakly
Supervised Collective Classification of Political Discourse on Twitter. ACL, 2017. Github repository,
https://github.com/kmjohnson/twitter-framing.

[2] E. Summers, N. Ruest. fwarc. University of Maryland, 2017. GitHub repository,
https://github.com/DocNow/twarc.

[3] M. Iyyer, P. Enns, et al. Political Ideology Detection Using Recurrent Neural Network. 2014.
https://people.cs.umass.edu/miyyer/pubs/2014_RNN_framing.pdf

[4] C. Olah. Understanding LSTM Networks. 2015. Github repository,
http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[5]1 S.M. Gerrish, D. M. Blei. Predicting Legislative Roll Calls from Text. International Conference
on Machine Learning, 2011. http://www.cs.columbia.edu/blei/papers/GerrishBlei2011.pdf

[6] A. Makazhanov, D. Rafieie. Predicting Political Preference of Twitter Users. IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining, 2013. https://ieeexplore-
ieee-org.stanford.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=6785723

[7] Tensorflow. Vector Representations of Words | TensorFlow. TensorFlow, 2018.
https://www.tensorflow.org/tutorials/word2vec.

[8] J. Pennington, R. Socher, C. D. Manning. GloVe: Global Vectors for Word Representation. 2014.
https://nlp.stanford.edu/projects/glove/.

[9] M. D. Conover, J. Ratkiewicz, M. Francisco, B. Gonc,alves, A. Flammini, F. Menczer. Political
Polarization on Twitter. Fifth International AAAI Conference on Weblogs and Social Media, 2011.
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM1 1/paper/viewFile/2847/3275

[10] D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization. ICLR Conference, 2015.
https://arxiv.org/abs/1412.6980.

[11] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg
S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, lan Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaogiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

