@ CS230

DeepDowNN: Automatic Crossword Clue Generation

Angad Rekhi Ting Chia Chang Charlotte Kirk
Dept. Electrical Engineering Dept. Electrical Engineering Dept. Chemical Engineering
Stanford University Stanford University Stanford University
arekhi@stanford.edu tcchang3@stanford.edu ckirk@stanford.edu
Abstract

Crosswords are a very popular type of puzzle, first invented in 1913 and included in almost every
newspaper around the world ever since. In this work, we seek to automate the process of novel
clue creation for crossword puzzles using neural networks. In particular, we use RNNs as
generators of multi-word text (clues). We combine crossword data from the NYT crossword
database with definition data from the GCIDE open-source dictionary to explore both word-to-
clue (one-to-sequence) and word/definition-to-clue (sequence-to-sequence) models. Our networks
are able to combine and regurgitate clues for words they have been trained on, but for words
outside of the training set, the clues they generate are generally unrelated to the passed word. We
outline possible reasons for this poor performance and provide corresponding paths forward.

1. Introduction

Crosswords are a very popular type of puzzle. Most crosswords published today, such as those
published daily in the New York Times, are composed by humans. Creating these puzzles takes
considerable time and skill. Programs now exist that can create the word grids used for crosswords
and that can choose clues to match the words in the grid from a database of previously used clues.
However, generating novel clues for crosswords using an algorithm has not yet been actively
explored. We propose the use of recurrent neural networks (RNNs) to automatically generate novel
clues for crossword words. We consider two approaches to tackle the problem: using the given
word to generate a clue directly (one-to-sequence) and generating a clue based on the definition of
the given word (sequence-to-sequence).

2. Related Work

Clue generation is similar to translation and text summarization, in which the goal is to output a
sequence relating to an input sequence. Neural machine translation as proposed by Sutskever et al.
attempts to use a single large neural network to output correct translations [1]. Bahdanau et al.
adds an attention mechanism on top of a basic encoder-decoder network to improve the
performance of the network [2]. The attention model has also been applied to abstractive
summarization applications by Rush et al. [3]. The slight difference between our problem and the
above two applications is that we are not looking to generate the “best” clue for a given word;
rather, we are interested in generating novel clues (that are still sensible) for words both inside and
outside the training data. This functionality, if achieved, would represent a significant advance
beyond today’s crossword generation process.

3. Dataset and Features

We obtained word/clue pairs from the New York Times crossword from January 1994 to March
2018; the unfiltered dataset consists of 742,149 pairs. This dataset includes repeated words with
clues that are not necessarily identical. We also used the GNU Collaborative International
Dictionary of English (GCIDE) open-source dictionary which is derived from the 1913 Webster’s
Revised Unabridged Dictionary as a source of definitions; we extracted 98,855 word/definition
pairs, using only the first non-obsolete definition for every word. It is important to note that in our
data, clues do not always correspond to the dictionary definition of the word; we return to this
point in the discussion.

We first processed the data by removing punctuation and converting all words to lowercase. Then,
we formed word/definition/clue triples by joining the word/definition and word/clue datasets based
on the words. To represent words in our data, we used Global Vectors for Word Representation
(GloVe) pre-trained on Wikipedia [4] as word embeddings. The GloVe dataset that we used has a
vocabulary size of 400K words (“Unfiltered”, Table I); however, in order to decrease the number
of trainable parameters and achieve reasonable computation time (as explained in the models
section), we limited our vocabulary size to a small fraction of the total.

Table I: Filtered Dataset Sizes

Filtering method Word/Clue Pairs | Word/Definition/Clue Triples
Unfiltered 576,344 251,524
First 5 156,007 57,033
20K Common Words 161,539 33,294
20K + First 5 29,616 5,943
Extraction 576,344 211,038
Extraction + First 5 156,007 47,801

Initially, we limited our vocabulary to the words in the 400K dataset that are also in the 20K most
commonly used word in the English language (as determined by n-gram frequency analysis of
Google’s Trillion Word Corpus); this reduced our vocabulary size to just under 20K, as some
common words did not have embeddings. But this significantly reduced the number of
word/clue/definition triples (“20K Common Words”, Table I). Therefore, we decided to extract all
word vectors in GloVe as long as they are present in the data; this keeps ~211K triples while still
achieving a reduction in the vocabulary size from 400K to ~80K (“Extraction”, Table I).

We also experimented with keeping only the first 5 clues for a given word and definition so that
the network would not be confused by too many different clues for the same input, and so that for
a fixed amount of computational resources, the network would see a wider variety of
words/definitions (“First 5 in Table I). We settled on combining this method with the extraction
described above to arrive at a dataset size of ~48K triples, with a vocab size of ~§0K.

Finally, we added 3 tokens to the extracted GloVe embedding dataset: a start token, an end token,
and a pad token. Our start and end tokens are randomly generated vectors (after setting a random
seed, so that we get the same vectors every time the code is run) of length 200 (the dimensionality
of the GloVe embeddings that we chose to use), and our pad token is a vector of zeros of the same
length. For each clue, we appended a start token before the first word of the sequence and an end
token after the last word of the sequence. Pad tokens were used such that the length of each clue
would equal the length of the longest clue. We did not add start, end, or pad tokens to our input
when the input is a single word (one-to-sequence); when the word’s definition is used as input
(sequence-to-sequence), we added the word itself to the beginning of the definition and appended

pad tokens at the end to ensure a consistent length across the dataset. Example data with tokens
are shown in Table II.

Table II: Example Data with Tokens

Word Definition Clues
<s> somewhat spoiled <e> <p> ...
overripe | overripe matured to excess <p>... | <s> like a mushy banana say <e> <p> ...

<s> turning brown as a banana <e> <p> ...
<s> gabriel eg <e> <p> ...

angel angel a messenger <p> ... <s> harp player <e> <p> ...

<s> theater backer <e> <p> ...

<s> sudden flood <e> <p> ...

spate a river flood an overflow

spate ; : <s> outpouring <e> <p> ...
<p>))
or 1nundation <p= .. <s> inundation <e> <p> ...
reagent a substance capable of <s> litmus for one <e> <p> ...
reagent producing with another a reaction <s> chromatography spray <e> <p> ...

especially when employed to detect ~ <s> chemistry lab selection <e> <p> ...
the presence of other bodies <s> assaying aid <e> <p> ...

4. Methods and Models

We built three different encoder-decoder models (Fig. 1) using Keras [5] with Tensorflow [6]
backend. The number shown in each block is the dimension of the output of the layer represented
by that block. The single-time step LSTM encoder of the Word-to-Clue model (W-C) takes as
input an index into the vocabulary list; its output states are fed into the 21-time step LSTM decoder.
The output of the decoder feeds into a fully-connected (dense) layer before a softmax activation
over a one-hot vector of length equal to the vocabulary size. Pad tokens are masked (though refer
to the discussion section for more details). Categorical cross-entropy loss is used for training,

For the Definition-to-Clue model (D-C), we use a 20-time step bidirectional LSTM encoder. We
add an attention mechanism to this model to arrive at a new sequence-to-sequence model (D-CA):
the attention block generates a weighted sum of the encoder output at each time step, which is
concatenated with the output state of the decoder before passing through a fully-connected layer
and onto a softmax activation across the vocabulary. The trainable parameters for all models are
about 5.7 million, determined mainly by the final softmax layer (~79663 x 64).

5. Results, Discussion, and Future Work

To quickly get a simple working model from which to proceed, we first trained the three models
shown on a small amount of data (2560 W/D/C triples with an 80/20 split). All models achieve
low bias when trained long enough on this fraction of the dataset, but exhibit poor variance (Fig.
2, L). Our models already included some degree of regularization (mainly dropout layers), so we
looked to scale up the amount of data. We first tuned the learning rate at small scale to ensure
efficient use of resources when scaling up (Fig. 2, R). We also confirmed that validation accuracy
would increase with the amount of training data (Fig. 3, L).

We then ran two larger-scale experiments with our D-CA network, using 20480 triples (100
epochs) and 40960 triples (30 epochs), both with an 80/20 split. The network trained on more data
achieves a smaller variance, but at the expense of bias (Fig. 3, R). We used this network to generate
clues by sampling from the softmax-generated distribution over the vocabulary at each time step.

Based on the quantitative results shown in Figs. 2-3 and our qualitative judgment of generated
clues (Table III), we find that our networks are able to combine and regurgitate clues for words
they have been trained on, but for words outside of the training set, the clues they generate are
generally unrelated to the passed word, though they are almost always grammatically correct and
“clue-like” in their feel.

Target Data

Wl satan at fist <END> <PAD> <PAD> - D-C satan at fist <END> <PAD> <PAD> - (19
... Decoder Dense
with Softmax
e 6 | 64 64 64 64 64
128
Encoder LSTM ... Decoder LSTM
Len=1 Max_Clue_Len =21
h28"
GloVe Word Embedding
79663 Vocabs x 200 Dims
Training Data ~ angel <START> satan at fist <END> angel a messenger <START> satan at fist <END>
Masked t Masked Masked
word_to_def_dict[angel]
Attention Block
h 64—
- | =] Target Data
D-CA] [satan <END> <PAD> J
T

™ One-Hot

.. Decoder Dense
with Softmax

i - Attention Block
|

Dense_EN Output

Encoder Bi-LSTM

.. Decoder LSTM
Max_Def_Len =20

Max_Clue_Len =21

GloVe Word Embedding
79663 Vocabs x 200 Dims

angel a messenger <START> satan at first <END>

Masked
word_to_def_dict[angel]

Fig. 1. Word-to-Clue model (W-C), Definition-to-Clue Model (D-C), and Definition-to-Clue with
Attention model (D-CA). Please zoom in for details as space is limited.

Training Data Masked

We’ve identified several possible reasons for this poor performance. First, in our dataset,
definitions and clues often do not refer to the same meaning of the word; if the word’s GloVe
embedding does not have enough (or the right) information to overcome this challenge, then there
may not be enough information in the input to generate a meaningful output clue. This problem is
aggravated by the fact that our source of word definitions is a century-old dictionary, while the
crossword clues are from the last 20 years of puzzles, making it all the more likely that clues and
definitions often don’t match. Moreover, multiple different clues for the same word/definition pair
might be confusing the networks, which is why we limited the frequency of any given word in our
dataset to 5 (which may include repeat clues).

In addition to definition-clue mismatch, there are issues surrounding accuracy and loss that must
be resolved in any future work. It seems that although we implemented masking layers in Keras,
the calculation of training and validation accuracy still includes <PAD> tokens. This reduces the
dynamic range of the accuracy metric. The use of a BLEU score-like accuracy metric might
actually be better-suited to this problem than the simple categorical accuracy that we used here.

Finally, because our performance ended up being data-limited and resource-limited, a simple way
to boost performance would be to include unknown word tokens in order to increase data size
while decreasing vocabulary size (and therefore the number of trainable parameters), while
perhaps implementing pointing [7] to be able to copy words not in the vocabulary.

1.00
8 097 S 097|
§094, S 004/
o % '
8 091} 2 091|
> o)
& 088/ £ 088}
@
3 ; O

0.85 0.85

Fig. 2. L: Accuracies vs epoch for all 3 models. R:

1.00

20 40 60 80 100
Epoch

Epoch

Learning rate optimization using D-CA model.

1.00 [———— 1.00 : ‘ ‘
|[—D-cA (T) —20480, I = 0.1% (T)
§ 0-951_p5cav) § 0.97 | *++20480, I = 0.1% (V)
S 090 = —40960, Ir = 0.5% (T)
8 085 8 (.94 | 7740960, Ir = 0.5% (V)
< <
< 0807 =
L 075} S 0917
o | S e 2.
2 0.70 Y e —
5 065/ &
geg————— 1L - - 0.85 : ‘ : ‘
55 56 o7 98 59 510511512513,14 0 20 40 60 80 100
Data Size Epoch
Fig. 3. L: Accuracies vs dataset size for D-CA model. R: D-CA accuracies vs epoch for large
datasets.
Table III: Generated Clues from D-CA
Top ¥ 1 n
Word Generated Clues op y1 Va. ues ind
Corresponding Words
: turning like a mushy banana ; .
* > o o
overripe like spoiled, not bright 45% like, 21% turning
angel* magical harp, Jopkey cordero, non non jew, 19% jockey. 7.9% harp
gabriel garcia marquez novel genre
ORI, b . .
spake giving indian, napolf:ons met .od, 2.8% big . 2.7% like
head on an egg, serious offering
' ' ind of fi .
reagent dirty phy31qs, kind © ood, 8.3% one, 4.7% kind
base acting, kitchen gizmo, jock

*In training set

6. Contributions

C. Kirk found the NYT crossword dataset and scraped it for word-clue pairs. A. Rekhi found,
downloaded, and scraped the GCIDE open-source dictionary for word-definition pairs. T. C.
Chang guided the construction of the first few models. All members worked together to format the
data, take the models from a rudimentary state to complex sequence-to-sequence models running
on AWS instances, and write the final report.

References

[1] L. Sutskever, O. Vinyals, and Q. Le, “Sequence to sequence learning with neural networks,”
Adv. in Neural Information Processing Systems, 2014.

[2] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to
align and translate,” Intl. Conf. on Learning Representations, 2015.

[3] A. Rush, S. Chopra, and J. Weston, “A neural attention model for abstractive sentence
summarization,” Empirical Methods in Natural Language Processing, 2015.

[4] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors for word
representation,” in Proc. EMNLP, 2014.

[5] F. Chollet et al., “Keras,” 2015. Available: keras.1o.

[6] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems,” 2015. Available: tensorflow.org.

[7] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization with pointer-
generator networks,” in Proc. 55th Annual Meeting ACL, pp. 1073—-1083, July 2017.

