CS230

Tennis Match Predictions Using Neural Neworks

Mitchell Dumovic , Trevor Howarth
Stanford University
mdumovic@stanford.edu, thowarth@stanford.edu

Abstract

Accurate tennis match predictions have the potential to have a huge impact on
sports betting markets. We use a deep neural network leveraging Long-Short-Term-
Memory (LSTM) cells to predict the winners of tennis matches given a dataset of
various statistics on every ATP men’s singles match since 2000. Our goal was to
use this deep network to match or improve upon the accuracy of existing cutting
edge prediction methods. With the final network, we were able to predict the
winner of tennis matches with approximately 69.6% accuracy on the test set, a
4% improvement over a naive prediction which predicts the winner entirely based
on who had the higher rank. This prediction accuracy matches the best results we
found in literature on the subject, but does so without the use of hand engineered
features.

1 Introduction

The projects authors are both very passionate about tennis, and wanted to use the tools that we have
learned in CS230 to build a model that predicts the winners of tennis matches. Due to the large number
of professional matches played each year, tennis betting makes up one of the largest betting markets
in the world. Odds makers have used a wide variety of statistical models to predict the outcome of
these matches, many based on metrics such as performance of players against common opponents!
and stochastic models considering the probability that each player wins individual points. Although
these traditional methods have been able to predict the outcomes of tennis matches with relatively
high accuracy, the author’s goal was to find out whether or not neural networks can be used to
improve this performance. The simple statistical models used in the past are limited by their creator’s
beliefs about what decides a tennis match. By implementing a neural network for prediction, the net-
work would be able to take advantage of the unexpected correlations neglected by traditional methods.

In order to make a prediction of the winner of a tennis match, our neural network architecture takes
in basic information about the match being predicted (the ranks of both players, the surface on which
the match is being played, etc.) as well as statistics such as points won and serving percentages
from the last 50 matches played by each participant in the match. These statistics are fed into the
neural network with LSTM, Dropout, and Dense fully connected layers in order to predict a binary
classification (0 or 1) as to which of the two players won that match.

2 Related work

A previous CS229 final project? evaluated how well various machine learning algorithms predict the
outcome of professional tennis matches. The machine learning tools that they evaluated included a
random forest, neural network with a single hidden layer, SVM, and logistic regression. The best

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

results for each of these approaches yielded 69.7,65.2,69.9, and 69.9 percent test accuracy. While
this group tried a number of machine learning approaches, the authors hypothesized that a more
complex network could produce better results.

Somboonphokkaphan? also attempted to train a neural network to predict the winners of tennis
matches, trying several different network architectures with different numbers of nodes and hidden
layers. Their best performing network had three layers and 27 input nodes representing features for
both the players and the matches, and it achieved an average accuracy of about 75% in predicting the
outcomes of matches in the 2007 and 2008 Grand Slam tournaments.

Sipko? attempts to use neural networks to predict what bets should be made on tennis matches for
maximum return on investment, as opposed to simply predicting the winners of matches. Here, Sipko
achieves a ROI of approximately 4.35% when in competition with the betting market. Sipko attempts
to use both logistic regression and a neural network in order to place bets on tennis matches, and
finds that the neural network results in the best return on investment.

3 Dataset and Features

The ATP (Association of Tennis Professionals) provides a dataset containing information about every
official ATP men’s tennis match since 1968°. For each row in the dataset, which corresponds to one
real tennis match, there are statistics such as the winner’s and loser’s age, rank, handedness, height,
as well as per match statistics such as the score, percentage of first serves won, percentages of break
points won, etc. These matches are sorted by date and contain information on the tournament and
surface on which they were played as well.

This dataset required significant processing before we had something we could feed to our first
pass neural network. We found that a large portion of the raw statistics were missing for the earlier
matches in the dataset, so we ultimately restricted our model to only matches played after the year
2000, for which most matches had complete statistics.

In our data pipeline, we took each match in the database and generated a match specific feature
vector as well as a series of feature vectors representing the 50 previous matches played by each
participant in the match. The match specific feature vector contained information on the age, height,
rank, and handedness of each player, as well as the surface on which the match was played (this was
encoded as a 1-hot vector across the four possible surfaces, grass, clay, carpet, and hard). The feature

Step 1: Clean dataset Step 2: Generate feature for each Step 3: Generate symmetric

match with label 1 feature with label 0

Original Dataset

(57422 x 49) Generate Match

Feature vector:

Remove
Nonessential
Features

(57422 x 37) (acess) (o
1

Generate Player
Remove 1 Match Matrix:
Matches with
Incomplete

Data
(44086 x 37)

breaks break s, breakssy breaks, break sy

surface 1-hot; surface 1-hot, surface 1-hotsy surface 1-hot; surface 1-hot;

surface 1-hoty surface 1-hot, surface 1-hotsg surface 1-hot; surface 1-hoty

acesy wcesy acess acesy aces;
Generate Player 2
Match Matrix: breaks, break s, breakss breaks, break s,
2

Figure 1: The full data processing pipeline.

acess)

breaksso

surface 1-hotg

acess

breakss

surface 1-hotgy

l
l

vector representing the a previous match played by a given player contained match statistics (serving
percentages, total points won, etc.) as well as whether the player won the match, which surface the
match was played on (once again encoded in a 1-hot vector), and the amount time between the match
and the current match being considered.

To improve the quality of our dataset, we only tried to predict matches where both participants had
statistics available from at least 25 previous matches. If a player had at least 25 matches played,
but not 50 matches played, then we padded the data with zeros as features for matches that were
missing. We recorded information on no more than 50 previous matches in order to reduce the size
of our dataset and reduce the time to train the network. We chose 50 matches as our cutoff because
analysis of the dataset showed that players rarely had more than 50 previous matches played within
the scope of our dataset. The previous match statistics were stored in a matrix for each player and
these, along with the match feature vector, served as the features for each match. We labeled each of
these matches with either a 1 (player 1 winning) or a 0 (player 1 losing). We created two symmetric
data points for each match in our database, one labeled 1 and one labeled 0. Augmenting the data in
this way allowed us to have an even mix of wins and losses in our dataset.

After we generated our feature csv files from the raw matches datasets, we divided our features into
95% training set (74202 examples), 2.5% dev set (1952 examples), and 2.5% test set (1952 examples)

4 Methods

We initially approached the problem with a simple feed-forward neural network. This model was
built in tensorflow and was used as a baseline against which to evaluate our other more complex
models. This network had 2 hidden layers in the form LINEAR -> RELU -> LINEAR -> RELU ->
LINEAR -> SIGMOID. The first hidden layer had 25 neurons, and the second had 12. For the cost
function, we used cross entropy loss.

For this first pass network, we used the averaged statistics from the last 50 matches played by each
player rather than statistics from individual matches. The averaged feature vectors for each player
as well as the match feature vector (which contained information on age, height, rank, etc.) were
concatenated and used as the input.

During training, we divided the train set into minibatches of size 32, and trained using a learning
rate of 0.0001 for 100 total epochs. For our final predictions, we thresholded the output of the final
sigmoid layer at .5 and said anything greater or equal to that corresponded to player 1 winning (a
label of 1) and anything less than that corresponded to player 2 winning (a label of 0).

After implementing the baseline, we wanted to create a model that could be fed raw statistics from
past matches rather than the averaged features we used for our baseline model. Averaging the statistics
from all the past matches throws away a lot of potentially useful information, and we hoped to create
a model that could glean more information from the past matches competed in by each player.

In our first attempt to avoid using averaged features, we simply concatenated the statistics from
all of the past matches into one large input feature vector. Each past match was represented by 11
features and we used 50 past matches for each player, giving us a dense input vector with more than
1000 elements. We fed this to a 4 hidden layer feed forward neural network with the architecture:
LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> RELU -> LINEAR
-> SIGMOID. The first hidden layer had 200 hidden units, the second had 100 units, the third had 50
units and the fourth hidden layer had 10 units. We trained this model with minibatches of 32 and a
learning rate of 0.0001 and used a prediction threshold of .5 for the output of the final sigmoid unit.

The four layer neural network described above ultimately performed significantly worse than our
baseline algorithm and it became clear that a more nuanced approach was required. The authors
hypothesized that a long short-term memory (LSTM) recurrent neural network could be used to
generate an "encoding" of each player for the purpose of prediction. LSTM networks are useful for
dealing with sequence data, especially data that occurs forward in time over unknown time intervals.
These networks effectively keep a "memory" of previous inputs to the network, and the authors
believe that this notion of memory is especially helpful for taking in match statistic data, where
each LSTM network "remembers" the information from the output of the previous LSTM cell in the
network and combines it with new input information to create an updated encoding.

Match

Features
LSTM 1 - LSTM2 . —+ LSTM50 || Dropout 4
(128), (128), (128), (50%)

! | ! Dense 1 | Dense2 [Output (y)
Player 1 Player 1 Player 1 (20 x Relu) (10 x Relu) (1 x Sigmoid)
Match 1 Match 2 Match 50
LSTM 1 - LSTM2 - —+ LSTM50 .| Dropout -

(128), (128) , (128), (50%)

[I I
Player 2 Player 2 Player 2
Match 1 Match 2 Match 50

Figure 2: The architecture of the LSTM network.

A diagram of the LSTM model, our best performing neural network is illustrated in Figure 2. We
start by feeding in data from the past 50 matches through an LSTM network with 128 output nodes.
This layer outputs a length 128 vector that represents an "encoding" for a player. Both players in the
to-be-predicted match are fed through the same LSTM layer, generating encodings for each of these
players. We then take these two player encodings, concatenate them with the match-specific features
described in section 3, and input this single concatenated vector into a fully connected layer that has
20 neurons and a ’ReLu’ activation. This is in turn fed into a full connected layer with 10 neurons
with a "ReLu’ activation, and finally goes through the output layer with a sigmoid activation in order
to produce a single output between 0 and 1. If this output is greater than or equal to 0.5, a win is
predicted. Otherwise, a loss is predicted. As with our other networks, the LSTM model was trained
on an Adam optimizer with minibatches of 32 and a learning rate of 0.0001. Back-propagation was
run through this entire network in order to train the weights in the network in order to minimize the
binary crossentropy loss on the data:

3

£= =3 duloglyi) + (1 =) (1 ~ log(y:))

K3

5 Results

A summary of the results for our various models can be seen in Table 1.

As a baseline metric for comparison for our dataset, we checked the accuracy in predicting a match’s
winner by predicting solely on which player had more ATP rank points (i.e. was ranked higher). This
baseline achieved 65.6% accuracy on our test set.

Model Test Accuracy
Naive Rank-Based Prediction 65.6%
Feed-forward network with averaged Match statistics 64.4%
Feed-forward network with concatenated match statistics 53.2%
LSTM (Figure 2) 69.6%

Table 1: Test accuracy of our three approaches alongside a Naive rank-based prediction scheme

After 100 epochs of training on our training dataset, our baseline model achieved 64.4% prediction
accuracy on the held out test set.

Our first attempt at predicting matches without averaged features fared much worse, achieving only
53.2% prediction accuracy on the test set after 100 epochs of training. Even after training many
variations on this architecture (networks with different numbers of layers and different numbers of
hidden units per layer), and searching a large range of hyperparameters, we could not achieve better
accuracy. Although a four layer fully connected neural network is theoretically able to approximate
any function, we believe we did not have enough data to train a network with this large of an input
space. This network architecture did not implicitly model the relationship between different features,

meaning that in order to make sense out of the many statistics we passed as input it would have to
learn that some subset of features represented aces for player 1 from past matches while another
subset represented aces for player 2 from past matches. Our dataset was not big enough to allow the
network to infer these relations so it performed poorly. Additionally, this network had no built-in way
to understand the time ordering of past matches, making the task of prediction even more difficult.

Our LSTM model addressed the many shortcomings of our first attempt at making predictions from
raw statistics. The LSTM layer automatically models the fact that the statistics vector from each past
match is of the same format and is designed to comprehend time series data like ours. Additionally,
the fact that the past matches from both players are fed through an identical LSTM layer forces the
network to consider each player’s statistics on equal ground. These structural advantages allowed
our LSTM network to achieve an accuracy of 69.6% on the training set after 100 epochs of training.
Figure 3 shows the test set accuracy of the LSTM network versus epoch over this training period.
While training, we found that no matter the hyperparameters used, our network almost always seemed
to converge around this value of 70%, which is quite similar to the maximum values for accuracy we
found in related literature. This suggests that Bayes error is close to 30% for this prediction problem,
at least with the data given by our dataset.

LSTM Model Test Accuracy Versus Epoch

>
\ >
¥ g /
L
N
=
=
=
e
—

Test Accuracy

M Vg

Epoch

Figure 3: The accuracy of the LSTM network over 100 epochs of training.

6 Conclusion

The authors designed a variety of neural network architectures to predict the result of a tennis match
from the statistics of past matches played by each player in the match as well as information about
each player at the time of the match such as age and rank. Although moderate accuracy was achievable
with a baseline model that used hand engineered features (the averaged statistics over the past 50
matches played by each player), the best performing model used raw statistics from each past match
to make predictions. Using an LSTM to create an encoding for the performance of each player over
the past 50 matches they had played allowed us to model more complex relationships in the time
series data than simple averages. This model achieved an 4% greater test accuracy than a naive
rank-based prediction scheme, putting it in line with the highest prediction accuracy seen by many
of the models in literature on the subject. Although a 4% improvement may not seem massive, this
could make a large difference in one’s performance against the betting markets in which the margins
are often quite narrow.

Going forward, we believe that our LSTM model is a sensible way to approach the problem of tennis
match prediction and that a dataset containing more features would be required to improve predictions
significantly. The performance of tennis players is notoriously inconsistent and many external factors
can have a major effect on a player’s mental state and the ultimate outcome of the match. A dataset
containing features including, for example, weather at the time of each match, the size of the crowd,
and the time of day at which the match was played could allow our encoding to better represent how
a player responds to a given match environment and ultimately make a more accurate prediction.

7 Contributions

Both team members worked on all parts of the project. We pair coded all of the files in the project,
and made all decisions about the network architecture, data pipeline, and project strategy together.

8 References

[1] W.J. Knottenbelt, D. Spanias, and A. M. Madurska. A common-opponent stochastic model for predicting the
outcome of professional tennis matches. Computers and Mathematics with Applications, 64:3820-3827, 2012.

[2] Cornman, A., Spellman, G. and Wright, D. (2017). Machine Learning for Professional Tennis Match
Prediction and Betting. [pdf] Available at: http://cs229.stanford.edu/proj2017/final-reports/5242116.pdf
[Accessed 10 Jun. 2018].

[3] A. Somboonphokkaphan, S. Phimoltares, and C. Lursinsap. Tennis Winner Prediction based on Time-Series
History with Neural Modeling. IMECS 2009: International Multi-Conference of Engineers and Computer
Scientists, Vols I and II, 1:127-132, 2009.

[4] Michal Sipko. " textitMachine Learning for the Prediction of Professional Tennis Matches. MA thesis.
Imperial College London, 2015.

[5] https://github.com/JeffSackmann/tennis_atp

