Semi-Supervised RNN-GAN for Audio Chord

Estimation
Charles Zhijie Chen Elizabeth Chu
Department of Electrical Engineering Google
Stanford University elizachu@stanford.edu

zcchen@stanford.edu

Corey McNeish
Lawrence Livermore National Laboratory
cmcneish@stanford.edu

Abstract

In this study, we present a semi-supervised learning chord recognition system
based on GAN and RNN. Unlike image recognition or NLP, the amount of publicly
available labeled audio chord datasets is scanty. To address this, we explore the
possibility of semi-supervised learning by implementing a RNN-GAN structure.
The hypothesis is that the performance of chord recognition can be further improved
by introducing unlabeled data produced by the generator.

1 Introduction

Audio chord estimation is the determination of the current chord being played for a given time slice of
aural data. As an example, a chunk of audio could contain a C Major chord for time when it contains
frequencies at 523, 659, and 784 Hertz simultaneously.

The applications for chord estimation are limited, but nonetheless interesting. Possible applications
include music sentiment analysis, automatic music accompaniment, and assistance in teaching ear
training and music theory.

Unfortunately, the presence of given combinations of frequencies over a certain threshold in a snippet
of audio is not sufficient to accurately estimate chords. A number of reasons are responsible for this.
Firstly, musical instruments produce more than just sinusoids of a given frequency. Tones produced
by musical instruments also contain harmonics; other frequencies that cause instruments to sound
distinct from one another. Secondly, chord tuning is rarely exact. Differences in temperature and
performer fatigue can cause group swings in pitch over tens of Hertz. One other notable reason is that,
to better align higher harmonics, musical groups intentionally play some notes in a chord slightly out
of tune.

Technical reasons make building learning frameworks for chord estimation difficult as well. For
one, very little annotated data is publicly available. The largest dataset we were able to find contains
just 740 unique songs [1]. Getting labeling assistance from places like Amazon’s Mechanical Turk
would be difficult due to the lack of general public knowledge on what various chords sound like. In
addition, it is useful to train on complete songs instead of just snippets of music, as the distribution of
chords in a given song is less random than the distribution over all songs. However songs become
extremely long sequences when binned into chunks small enough to be useful, which heavily impacts
training time.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Generated
Generator music

Figure 1: Overall GAN structure of the system.

Figure 1 shows the overall structure of our system. Our input and output data representations are
presented in a later section. The discriminator and the generator are both RNNs. The generator
produces synthesized music pieces, which is fed into the discriminator. The discriminator performs
both the recognition of music chords and the identification of whether the music piece is synthesized or
from the training distribution. For our model loss, we used the combined entropy of both the generator
and the discriminator tasks. For the scope of this study, we did not train the generator, rather we
incorporated the Magenta music generation project!, a Google Brain development. Correspondingly,
we deleted the generator loss from our total loss function, giving a loss of the summed chord
recognition and real/fake cross entropies.

2 Related work

[2] introduces the use of Recurrent Neural Networks for chord recognition. In this paper, Boulanger
et al. use chromagrams and preexisting chord information to train a state-of-the-art model. This
paper achieves a notable improvement in accuracy, with basically no downsides. Minor issues
include having to train the network in stages, to build intermediate representations of aural data,
and a convoluted dynamic-programming beam search implementation for sequence transformation.
Unfortunately, their dataset is not available.

In [3], a GAN was proposed as a way to improve the performance of standard classifiers. Regarding
a standard classifier that classifies a data point into one of K classes, Salimans et al. suggested that
supervised training can be converted to semi-supervised training by adding unlabeled samples from
the GAN generator to the dataset and labeling them with a new "generated class" label y = K + 1.
The optimization was thus modified to minimize the sum of Lgupervisea, Supervised loss given by
cross entropy of labeled chords, and Lunsupervised, Unsupervised loss being the cross entropy of the
last dimension of real/generated label. The mechanism was not fully understood, but our intuition is
that by identifying real/generated data points, the discriminator better captures distribution of the real
dataset, from which other dimensions (chord labels) may benefit.

3 Dataset and Features

Our dataset includes chromagrams (see Figure 2) of 740 unique songs from the McGill Billboard
dataset. These chromagrams are a sequence of 24-dimensional vectors, containing tuning-adjusted
and normalized spectra corresponding to bass and treble registers of the standard 12-tone chromatic
scale. The dataset also includes labels per time-slice in the standard MIREX format: <start time>
<tab> <end time> <tab> <chord>, with floating-point start and end times, and chord in the format
<Note>:<tonality>. An example, trimmed to 4 decimal places: 1.8015 3.5296 A:min. There is an
additional label, N, which indicates no chord is present for the duration. We convert the chord label
representation to an array of chord labels at the sampling rate of the chromagram, for example [N, N,
N, A:min, ..., N]. This is then one-hot encoded into 25 categories.

'https://magenta.tensorflow.org/

Waveform

2877 2678 2678 258 2581 2882 25t

Running !
normalization

Spectrum Chromagram

A toass) J2eTeeei00n]

Figure 2: Conversion of raw audio samples into a chromagram

4 Methods

4.1 Preprocessing

Each of the 890 songs in McGill Billboard dataset was sliced into frames of increment 46ms
(corresponding to 2048 points under 44.1kHz sampling rate). The chroma vector at each frame is
24-dimensional. Therefore, the chromagram X () of song 7 is a n()-by-25 matrix, where n(¥) x 46ms
is length of the song. We also fetched the ground truth label for every frame from .lab discriptive
format and formed a n(¥)-dimensional vector y(*). Labels are given in integer indices, while the
two-way mapping between chord names and their indices are also given. Since the length of different
songs varies in a wide range (min=2458, max=15122, mean=4656), it is not efficient to zero-pad all
songs to uniform length. Thus, we created a python list to store all chromagrams and chord labels.

4.2 Discriminator
The discriminator D reconstructs chords from chromagrams by outputting a K-dimensional vector

of logits {l1, ..., [} with a final softmax layer to represent chord prediction. An extra class K + 1 is
appended at the end to represent the prediction of whether the input data was real or generated music.

Yi= B Yt+1 = I:min

LSTM_] LSTM_t+1 LSTM_t+2 LSTM_t+3

forward forward forward g < forward

1 \
______ LSTM_t S—| | . LSTM_t+3
backward ! backward

Figure 3: Single layer bidirectional LSTM. We stack two layers for the discriminator.

As the chord of a moment is defined by both preceding, current, and successive notes, we used
bidirectional layers to capture the forward and backward temporal dependencies between notes. Thus,
D is a RNN consisting of 2 stacked bidirectional LSTM layers (figure 3).

We use cross entropy loss that takes into account both supervised and unsupervised loss, where
supervised loss comes from erroneously classifying labeled data in classes 1.. K, and unsupervised
loss from classifying generated data as real.

Lunsupervised == Emvprdata(m) IOg[l - pmodel (y =K+ 1|m)] + EmNG log[pmodel(y =K+ 1|$)]

ey
Lsupervised = E“’W’Vpdam () IOg pmodel(y|m’ y<K+ 1) @
discriminator ~ "~ supervised + Lunsupervised (3)

4.3 Generator Pipeline

To train both the generator and the discriminator is beyond the scale of this study. Thus, we utilized
a well trained music generator model Magenta developed by Google Brain>. However, Magenta
outputs MIDI files (containing only notes and time), and bridging between Magenta and McGill
Billboard formats through code is by no means a trivial task. Our protocol was to convert MIDI
files to soundtracks by Fluidsynth? with Soundfont*. Consequent soundtracks were later fed through
Vamp® with plugins Sonic-Annotator® and NNLS-Chroma’ in order to attain chromagrams produced
with the same configuration as described in [4].

5 Experiments/Results/Discussion

5.1 Results

Figure 4: Training loss of the first 39 epochs. The training time of one epoch is exceedingly long due
to large song sequences.

Table 1: Hyperparameters and results.

Batch size 89
Learning rate 0.005
LSTM hidden units | 100
Loss value 5.76
Overlap ratio 4.9%

“https://magenta.tensorflow.org/
*http://www.fluidsynth.org
*http:/freepats.zenvoid.org/sf2/sfapp21.pdf
Shttps://www.vamp-plugins.org/index.html
Shttps://www.vamp-plugins.org/sonic-annotator/
"http://www.isophonics.net/nnls-chroma

We trained on 89 labeled songs with an initial learning rate of 0.005, using the AdamOptimizer to
minimize binary cross entropy. The result loss values are shown in 3. The dip in the beginning of
Figure 4, we hypothesize, is due to the learning rate being too large, overshooting the local minima,
resulting in an increase in loss.

We additionally experimented with GRUs and forward-only RNNs (to improve training time), however
we did not see significant improvements from either modification, in training time or accuracy.

Our evaluation metric is the overlap ratio, as is the industry standard [2] and used in MIREX audio
chord estimation competitions. The overlap ratio is computed as a ratio between the duration
of correct chord annotations and the total duration of annotated segments. We have not reached
convergence, and therefore the overlap ratio is 4.9%, compared to 80% in RNN implementations in
recent results [2]. Note that the expected overlap ratio of random uniform classification for 25 chords
is less than 4%, because the prior input distribution is non-uniform (there are biases towards certain
more popular chords). Thus, a performance of 5% indicates that our network does learn to predict
chords.

It was later realized during code clean-up that there was an error in Discriminator loss value imple-
mentation. We apply softmax across all logits when calculating loss, but the softmax should really be
applied only to the first K classes that represented chord predictions. The last class, K + 1, should
be a binary value of 1 or 0. Applying softmax artificially enforces the value of K + 1 to be less than
1, given that we want non-zero values for {l1, ..., [k }. This mistake was realized too late for further
training, but could be a future improvement.

6 Conclusion/Future Work

Despite the implementation mistake, we see an improvement in loss value and overlap ratio. This
shows that the network does learn to predict the output distributions of chords. We have confidence
that given more time and computation resources to train, especially in a generative adversarial
framework, we could see further improvements. In addition, we would like to explore different
discriminator architectures and improvements beyond bidirectional LSTM, such as utilizing GRUs
with the working model, beam search for generation, and attention models for identifying important
chromagrams for chord prediction.

6.1 Discussion on Strategic Improvement

The result shows the importance of good strategic planning at the early stage of the project. We
should have better assessed the difficulties and workload; tuning GANS is a very time-consuming
process. Therefore, the better way would be to start with some very simple models and rough results,
and add more components and features one after another. For example, we could instead start with
a simple fully-connected model, then switch to a forward LSTM, then to bidirectional LSTM or
perhaps a different type of RNN. This would have helped us catch our error sooner, due to the quicker
training time of non-recurrent networks. For the generator part, we could output random noise at
the beginning to incorporate into the system, and then figure out how to fit Magenta in the pipeline.
We spent a considerable amount of time fine-tuning our individual parts, but did not fully realize the
challenge of assembling the whole system. We should learn from this project, and keep Prof. Ng’s
iteration circle of idea->code->experiments in mind.

7 Contributions

Charles Chen Generator, dataset preprocessing
Elizabeth Chu Discriminator

Corey McNeish | AWS manager, evaluation metrics
Table 2: All unlisted workload (papers/poster) was shared equally.

References

[1] John Ashley Burgoyne, Jonathan Wild, and Ichiro Fujinaga. An expert ground truth set for audio
chord recognition and music analysis. In Anssi Klapuri and Colby Leider, editors, Proceedings
of the 12th International Society for Music Information Retrieval Conference, pages 633—638,
Miami, FL, 2011.

[2] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Audio chord recognition
with recurrent neural networks. In ISMIR, pages 335-340. Citeseer, 2013.

[3] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems,
pages 2234-2242, 2016.

[4] John Ashley Burgoyne, Jonathan Wild, and Ichiro Fujinaga. An expert ground truth set for audio
chord recognition and music analysis. In ISMIR, volume 11, pages 633-638, 2011.

