/”F%\ \

unicef &

S
=

4

CS230 A BAYES IMPACT

BuildingNet
Building Detection from Satellite Imagery

Jasmine Hu Manan Rai Vivian Wong
Department of Department of Department of Civil and
Electrical Engineering Computer Science Environmental Engineering
Stanford University Stanford University Stanford University
jxhu@stanford.edu mananrai@stanford.edu vwwong3@stanford.edu
Abstract

A major challenge for humanitarian organizations is monitoring changes of refugee
camp locations. A building detection model using satellite imagery can provide
an automated mean of detecting updated footprint of buildings. This project
aims to evaluate, improve and compare the performance of two state-of-the-art
models commonly used for image segmentation: Mask R-CNN and U-Net. We
experimented with different convolutional backbones for the Mask R-CNN and with
deeper connectivity in the U-Net. We find that even with 4 epochs of training, our
best model surpasses the performance of our baselines, and achieves comparable
results as most existing work.

1 Introduction

In a world where wars and natural disasters render unassuming citizens as refugees, humanitarian
support is called for at an alarming rate. In such a case, automated tracking of refugee camps is
important for the dispersal of supplies and other forms of aid. This project is motivated by the hope
to assist UNICEEF in providing assistance to refugees all around the globe, by creating a model that
can segment buildings from satellite images and thereby help them detect, segment, and optimize
refugee camps, in turn helping them in their efforts to provide humanitarian support.

2 Related Work

The Mask R-CNN is well-known for semantic segmentation [2] and a source code using a ResNet as
its backbone is available as the CrowdAlI challenge baseline model [11].

The U-Net is another well-known network for efficient image segmentation [1,3] and a baseline code
is available from the Kaggle DSTL Competition’s 3rd place winner [12].

The idea of adding morphological processes stemmed from the Kaggle DSTL Competition’s 1st place
winner’s interview [4], where the interviewee mentioned their strategy of dilating the training masks.
The idea of adding morphological post-processing was inspired by Minerva ML Lab’s entry to the
2018 Data Science Bowl Competition, where they added the watershed algorithm [10].

3 Dataset and Features

In order to build a comprehensive model, we used datasets from the CrowdAI Mapping Challenge
(with zoomed-in satellite images) and the Kaggle DSTL Competition (with zoomed-out images)

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

[6][7]. The CrowdAl dataset includes RGB images with a resolution of 300 x 300 and MS-COCO
format annotations. The training set includes 8366 images, while the validation and test sets include
1820 images each. The Kaggle DSTL includes RGB satellite images with a resolution of 3345 x 3358,
annotated with MultipolygonWKT. The train set includes 25 images and the test set include 32 images.
An example of an image from each dataset is shown in Figure 1 and 2.

Fig 1. Sample Image from the CrowdAI Dataset Fig 2. Sample Image from the Kaggle Dataset

4 Methods

4.1 Mask R-CNN

The Mask R-CNN is a framework for effective semantic segmentation. It is an extension of the Faster
R-CNN model which uses a Region Proposal Network with Non-max Suppression to identify bound-
ing boxes for objects of interest, as well as predicts the class of the object. These are complemented
by masks generated using an additional branch (composed of a Fully Convolutional Network) that
conducts pixel-level segmentation.

box

s . classification
regression
fully connected
reads o layers

- fixed size feature map

~ RoIAlign layer

feature map

- convolutional backbone

,‘E:Qféég; Py

Figure 3. Mask R-CNN architecture.

It uses a combination of the class, mask, and bounding box losses as the total loss. A Smooth L1
Loss is used to regress the position of the bounding box; the mask prediction is based on a binary
loss. This architecture typically uses a ResNet as its convolutional backbone. We also experimented
with a DenseNet121 backbone.

Figure 4. DenseNet architecture [14].

4.2 U-Net

The U-Net has 10 convolution layers. It has 5 contraction and 4 expansion blocks with 1 final convolu-
tion layer to map the output. Our loss function contains a cross-entropy of IoU probability in addition

to the typical binary cross-entropy (eqn. (6) in [3]). For a typical U-Net, each contraction/expansion
block has 2 repeated batch normalization, 3 X 3 convolutions, and exponential linear units (eLu).
Each contraction block output is also concatenated to a corresponding expansion block.

We experimented with 2 variations: one inspired by the ResNet [13], we added local residual skip
connections within each contraction/expansion block, and the other inspired by the DenseNet [14],
we attempted concatenating all convolution outputs among the pairing contraction/expansion blocks.
Due to memory limit, we only concatenated inside blocks, and from contraction blocks (before the 1
by 1 channel-reduction bottleneck layer) to the pairing expansion blocks.

3 12 12 U-Net concatenate 3x3 elu
i ! 35' 1 ¥ 2x2 max pool _,I_,I_, _,I_,I
X
4 rfop |g| 4+ 2x2 up sample
2 e e
1122 1122)|%° 80)
- w/ residual concatenate 3x3 elu
v 24 13 connections § 2x2 max pool I I I I
SRUEN [N N N
62|:| |:| 562 4+ 2x2 up sample
¥ 48 A8 b
232|:| 282 w/ dense Contraction Layer L Expansion Layer 9-L
¥ 9% 96 4 connections 3x3 elu 3x3 elu
142 142
v 192 * v
2x2 avg pool M E(M e i g
—
7 4 2x2 upsample

concat

Figure 5. Illustration of the overall U-Net structure and layers within contraction/expansion blocks.

4.3 Morphological Operations

Furthermore, morphological operations were experimented in the pre-processing and post-processing
parts of the model. Before training, buildings’ ground truth masks were dilated, which is the
enlargement of masks. This allowed the model to capture some buildings that it couldn’t notice
before. However, the immediate downside is that some building masks started to overlap, leading to
an overall reduction of number of buildings detected[8].

We tried two post-processing methods to solve the problem. The first was with erosion, shrinking
masks to reduce overlapping[9]. The second is the watershed algorithm, which separates overlapping
objects by computing an image that is the distance to the background, then marking objects along the
pixels with minimum distances. However, this algorithm has shredding effect and over-increased the
detectable building numbers. Future work along the watershed algorithm could include tuning the
watershed algorithm so that it can separate buildings with a higher tolerance.

5 Results and Evaluation

5.1 Hyper-parameters

Training was done on an NVDIA GeForce 1800 Ti GPU. Some tests were conducted on an AWS
Ubuntu Deep Learning AMI EC2 instance. Figure 6 lists the hyper-parameters for the Mask-RCNN
with a DenseNet backbone and shows the losses during 4 epochs of training.

Loss | 0SS
Hyperparameter Value(s) RPN Class Loss
4
Learning Rate 0.001 _;Zt::";j:;gi: Loss
Weight Decay 0.0001 3 «==MRCNN Bounding Box Loss
MRCNN Mask Loss
Learning Momentum 0.900
2
Mini-batch size 5
Steps per epoch 1000 1]
|
Layers per Dense Block | [6, 12, 24, 16] g

0
0 1000 2000 3000 4000 Steps

Figure 6. Hyper-parameters for the Mask-RCNN with DenseNet backbone and losses during training.

Figure 7 lists the hyper-parameters for the U-Net, and they are the same for the typical U-Net, model
with residual connections, and model with dense connections. We tuned the hyper-parameter of the
starting number of channels. 12 channels had a training IoU of 0.736 and took 166 ms to train per
step. A typical starting channel number of 32 improved the IoU by 2.7% but took 2.25 times longer
to run. Hence we stayed with 12 starting channels to test network structure additions.

Total
Hyperparameter Value(s) 51 Loss — Initial channels = 6

0.001 — Initial channels = 12
—— Initial channels = 32

Learning Rate

By 0.9 4
8, 0.999
Mini-batch size 128
Steps per epoch 25 2
Contract / Expand Layers 5/4
Initial Number of Channels 12 0

0 25 50 75 100 Steps
Figure 7. Hyper-parameters for the U-Net and training losses during hyper-parameter tuning.

5.2 Performance

The models’ performances are evaluated quantitatively with the Intersection over Union (IoU) metric.
Table 1 shows the IoU with various architectures trained over 4 epochs on the CrowdAl dataset.
Qualitative performances can be observed from the predicted masks in Figures 8 and 9.

Model Training loU Test loU
o e Jeke NIA 0.396
> w/ DenseNet N/A 0.00023
Basic U-Net 0.792 0.765
> wl/ res. con. 0.736 0.705
> w/ dense con. 0.803 0.788

Table 1. Model performances on the crowdAl dataset over 4 epochs of trainings.

Tested on the Kaggle dataset, the IoU obtained by baseline U-Net, U-Net with residual connection,
and U-Net with dense connections, are 0.6790, 0.7009, 0.7015. (This IoU is evaluated on the training
set because the validation/test set data is no longer available to the public.) The IoU is reasonable
compared to the training IoU of 0.7453 over 50 epochs with 16-band data.

5.3 Morphological Operations

Table 1 demonstrates the results on a sample image from the Kaggle dataset, with masks predicted
by a U-Net with residual connections. The results showed the final predicted masks with each
morphological operation. In the Watershed algorithm, the three masks shown respectively in the order
of left to right are the originally predicted mask with overlapping buildings, the distances computed
and the mask showing separated building masks.

Predicted # of Buildings
Mask Detected

No 121
Morphology e
Dilation in Pre-Processing 101
Dilation in Pre-Processing + 103
Erosion in Post-Processing
Watershed 625
(building separation)

Table 2. Example morphological operation results on U-Net predicted masks from Kaggle dataset.

The effects of dilation, erosion and watershed are more effective for satellite images where buildings
are small and sparse. Therefore, these morphological operations were implemented on a model using
the Kaggle dataset, where satellite images are more zoomed out.

5.4 Discussion

For the Mask R-CNN model, our Baseline with ResNet50 backbone, trained over 40 epochs, performs
decently well. DenseNet121 as backbone gives comparable relative performance after 4 epochs.

All U-Net model performed well after 4 epochs of trainings, and the one with dense connection has
a test IoU twice higher than that of basic R-CNN trained over 40 epochs. The U-Net performance
varied based on the dataset: residual connection improved IoU on the Kaggle dataset, but worsened it
on the CrowdAlI dataset.

Dilation in pre-processing improves detection but overlaps buildings, whereas erosion in post-
processing reduces overlap. Watershed can separate overlapped masks but requires additional tuning
since it impairs the model’s ability to classify buildings with uneven shapes as a single building,
thereby resulting in a very high prediction of the number of buildings.

6 Conclusion

In conclusion, we experimented with the architectures of Mask R-CNN and U-Net to improve their
performances on building detection from satellite imagery. We also experimented with morphological
pre- and post-processing. The U-Net model with dense connection performed best, surpassing the
baseline by a huge margin with just 4 epochs of training.

7 Future Work

We would like to explore using the U-Net as a backbone for the Mask R-CNN, combining the
strengths of the two models. Other backbones that we considered as possible backbones but did not
complete tests on include the VGG-16 and ResNeXt models, which may hold promise. The Mask
R-CNN with a DenseNet121 backbone achieved comparable results over 4 epochs as the baseline, and
training for longer may improve its performance. Training longer epochs on the U-Net model, and
understand better how connections affect training can also be worth experimenting with. Finally we
could improve the watershed algorithm to separate overlapping building masks with higher tolerance.

8 Code

The code is available at github.com/mananrai/BuildingNet.

9 Contributions

Manan Rai worked on preparing the CrowdAlI dataset and dataset splits, and experimented with
the Mask R-CNN, considering the DenseNet121, VGG-16 and ResNeXt backbones. Jasmine Hu
worked on experimenting with various additions to the U-Net model including residual connections
and dense connections, and extended the network functionality to take CrowdAI MS-COCO format
data. Vivian Wong worked on experimenting with morphological operations on the U-Net model,
and contributed to report writing and poster creation. All tteam members contributed to report writing,
poster creation and poster presentation.

References

[1] Olaf Ronneberger, Philipp Fischer, Thomas Brox. U-Net: Convolutional NEtworks for Biomedical Image
Segmentation. Retrieved from arXiv:1505.04597

[2] Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick. Mask RCNN. Retrieved from arXiv:1703.
06870

[3] Vladimir Iglovikov, Sergey Mushinskiy, Vladimir Osin. Satellite Imagery Feature Detection using Deep
Convolutional Neural Network: A Kaggle Competition. Retrieved from arXiv:1706.06169

[4] Kaggle Team. (2017) Dstl Satellite Imagery Competition, 1st Place Winner’s Interview: Kyle
Lee. The Official Blog of Kaggle.com. Retrieved from http://blog.kaggle.com/2017/04/26/
dstl-satellite-imagery-competition-1st-place-winners-interview-kyle-lee/

[5] Minerva-ML. (2018) Open Solution to the Data Science Bowl 2018. Retrived from https://github. com/
minerva-ml/open-solution-data-science-bowl-2018

[6] Datasets from the CrowdAI Mapping Challenge. Retrieved from https://www.crowdai.org/
challenges/mapping-challenge/dataset_files

[71 Dstl Satellite Imagery Feature Detection. Retrieved from https://www.kaggle.com/c/
dstl-satellite-imagery-feature-detection

[81[9]1[10] scikit-image Morphology Module Documentation. Retrieved from http://scikit-image.org/
docs/dev/api/skimage.morphology.html

[11] Crowdai-mapping-challenge-mask-rcnn. Retrieved from https://github.com/crowdAl/
crowdai-mapping-challenge-mask-rcnn

[12] Vladimir Iglovikov, Sergey Mushinskiy, Vladimir Osin. Kaggle dstl_submission. Retrieved from https:
//github.com/ternaus/kaggle_dstl_submission.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition.
Retrieved from arXiv:1512.03385

[14] Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger. Densely Connected Neural
Networks. Retrieved from arXiv:1608.06993

