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Abstract

We investigate image-to-image translation using conditional-generative adversarial networks (C-
GAN) on aerial-to-map images. We start by reproducing the C-GAN model proposed by Isola et al.,
and then explore various network architectures, loss functions, and training strategies. We present
qualitative and quantitative evaluations of different models and conclude that the residual-based
model generates superior quality images with only 1000 training examples.

1 Introduction

Image-to-image translation are tasks that take in input images and generate or manipulate them into a different visual
space. Traditionally, different tasks such as converting grayscale to color, image to semantic labels, and edge-map
to photograph require different hand-crafted machinery. Recent development of GANs [1] offers a more general
approach for such similar tasks through learning an “adversarial” loss that adapts to data. In this project, we explore
image-to-image translation using C-GANs [4], in which we take an input image and generate the desired output image
using GAN conditioned on the input image.

2 Related Work

The predecessor to image-to-image translation was “image analogies” proposed by Hertzmann et al. [3], in which a
nonparametric multiscale regression model was used to learn a filter to apply to the input image. Traditional methods
for image generation are neither flexible nor efficient. Fortunately the recent development in generative adversarial
networks shed new light on image generation tasks. GAN in unsupervised setting has achieved remarkable results
in image inpainting [10], style transfer [7], single image super-resolution [6]. To make the GAN framework more
flexible for a wide range of image translation tasks, Isola et al. [4] proposed to use conditional adversarial network to
learn a structured loss so that the network adapts to the tasks and data. Our method differs from the previous works in
architecture choices, and utilization of important ideas developed in perceptual loss [5], residual connections [2], and
deep convolutional adversarial generative networks [12].

3 Dataset

We use the aerial-to-map dataset from the pix2pix datasets[4]. The data are in the format of paired aerial and map
view of the same region scraped from Google Maps. The dataset consists of 1097 training image pairs, 1098 validation
image pairs, and 1098 test image pairs. Each image is composed of RGB channels and of size 600 x 600. Dataset is
obtained from the pix2pix project site.

3.1 Data Preprocessing

The original aerial input image size is 600 x 600. We first resize the input images to 286 x 286 due to computation
constraint. Then we perform data augmentation including random cropping to 256 x 256 and random horizontal
flipping. Lastly, we normalize all the image pixel values to between [—1, 1] for easier training.
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4 Methods

The conditional-GAN consists of two major parts: generator G and discriminator D. The task of generator is to produce
an image indistinguishable from a real image and "fool" the discriminator. The task of the discriminator is to distinguish
between real image and fake image from the generator, given the reference input image. Figure. 1 illustrates the
conditional-GAN architecture.
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Figure 1: Network architecture of conditional GAN model.

4.1 Loss Formulation

The objective of a conditional-GAN is composed of of two parts: adversarial loss and LI loss. The adversarial loss can
be expressed as:

Leoan(G, D) =Eq y[logD(x, y)] + Ez[log(1 — D(z, G(x))] M

L1 distance is added to the generator loss to encourage the low-frequency correctness of the generated image. L1
distance is preferred over L2 distance as it produces images with less blurring [4]. Thus our full objective for the
minimax game is:

(G*, D*) = a1g ngn mgx(ﬁcGAN(G, D) + )\['Ll (G)) (2)

4.2 Network Architecture

4.2.1 Generator

We develop our training framework in PyTorch [9]. Both variations of our generator processes an input image x of size
3 x 256 x 256 and generates an output image G(x) of the same size.

U-Net The U-Net generator is an encoder-decoder network with symmetrical long skip connections [13]. The network
consists of 8 encoding layers and 8 decoding layers, with skip connections from layer ¢ to layer n — ¢, where n is the
total number of layers. Each encoding and decoding block follows the form of convolution/deconvolution-BatchNorm-
LeakyReLU. Figure. 2(a) illustrates the U-Net architecture.

ResNet To improve model performance, we develop a residual-based network based on the ResNet model in Johnson
et al. [5]. Our network is composed of 2 encoding blocks, 6 or 9 residual blocks (ResNet-6 or ResNet-9), and 2
decoding blocks. Each encoding or decoding block follows the two-stride convolution/deconvolution-InstanceNorm-
ReLU structure, and each residual block follows the convolution-InstanceNorm-ReLU-convolution-InstanceNorm
residual connection structure. Figure. 2(b) illustrates our ResNet architecture.

ResNet-50 To further increase the capacity of our generator, we use the ResNet-50 network by He et al. [2]. We
discard the last fully connected layer, and add five deconvolutional blocks to upsample the encoded features in order to
produce output image of size 3 x 256 X 256.

4.2.2 Discriminator

PatchGAN We use a convolutional "PatchGAN" classifier with architecture similar to the classifier in pix2pix [4] as
our discriminator. PatchGAN discriminator determines whether an image is real or fake by using local patches of size
70 x 70, rather than the entire image. The discriminator takes in two images, the input image (x) and the unknown
image (G(x) or y), pass them through 5 downsampling convolutional-BatchNorm-LeakyReLU layers, and outputs a
matrix of 30 x 30, in which each element corresponds to the classification of one patch.
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Figure 2: Generator Network Architecture

ImageGAN ImageGAN uses 7 downsampling convolutional-BatchNorm-LeakyReLU layers, and classifies whether
an image is real or fake with receptive field of the entire image.

4.3 Training

For each iteration during training, we alternate between one step of gradient descent on D and then G. We use binary
cross-entropy loss (BCE) for the adversarial loss and non-saturated version of the discriminator loss. This translates to

Leen(G, D) = BCE(D(z, G()), 1) + ALLi (G) 3)
Las(G, D) = BOE(D(z,G(x)),0) + BCE(D(z, y),1) @)

We also explore the option to replace BCE with least squares loss for the adversarial loss because least squares loss is
proven to generate higher quality images, and stabilizes the training process [8].

The discriminator trains faster than generator because classification is a relatively simpler task compare to generation.
As a result we need to slow down the rate at which the discriminator learns relative to the rate generator learns. In our
study we slow down Lg;(G, D) by a factor of 2 as suggested by Isola et al.. We use two separate Adam solvers for the
generator and discriminator with 5; = 0.5, 82 = 0.999, learning rate v = 0.0002, A = 100. The dropout rate for each
decoder block is 0.5, and no dropout is employed for the encoder blocks. We train the model for 200 epochs until the
loss plateaus.

We choose to use the aforementioned hyperarameters because they have proven to work well with the C-GAN model
developed by Isola et al [4]. We experimented with different values of learning rate, L1 loss weight scale A, and dropout
rate; different normalization methods including batch normalization, instance normalization, and no normalization; and
different initialization methods including uniform initialization, normal initialization, Xavier initialization and Kaiming
initialization. In our experience the previously listed hyperparameters help our model achieve the best performance. We
also explored different training frequencies for the discriminator which we will discuss further in section 5.3.

5 Results and Discussion

5.1 Visual Analysis

The generated images from different architectures are shown in Figure. 3. The baseline is the pre-trained C-GAN model
from Isola et al. [4]. Our results show that both U-Net and ResNet generators can capture the general features of the
aerial images. Our U-Net model with finely tuned parameters produces better results than the baseline, and generates
maps with clearer definition of roads.

Our residual connection based generators outperform the U-Net generators in this aerial-to-map translation task.
ResNet-9 is able to identity the highways and produces straighter street blocks in the map. ResNet generators are
effective because residual connections make it easy for the network to learn the identity function [2], and allow easier
training in deep networks. Both of these two properties are highly appealing in image translation tasks. In our study
ResNet-50 does not produce good quality maps. We speculate the reasons are: 1) More hyperparameter tuning is
needed since ResNet-50 is a much deeper network 2) Our dataset might be too small for training such a deep network.



3) ResNet-50 largely increases the capacity of the generator but discriminator is kept the same, so there might be an
performance imbalance between the two.

In the study we also investigate the impact of PatchGAN and ImageGAN discriminators on the performance of our
C-GAN model. PatchGAN processes information on 70 x 70 local patches instead of an entire image, has fewer
parameters, and is faster to train. The generated images from PatchGAN as the discriminator have better quality than
ImageGAN (column 3 vs. column 4). Thus, PatchGAN is our default discriminator.

All models struggle more with capturing scenes with large area of green lawns and curvy walkways. We think the
unsatisfying performance with these more complex scenes is due to the data distribution of our training set - there are
more training examples with grid-like streets than with water and parks with irregular pedestrian walkways.

Baseline UNet UNet ImageGAN ResNet-6 ResNet-9 ResNet-50 (He et al.) Groundtruth

Figure 3: Generated map images of different architecture and hyperparameters. From left to right are source aerial
images, baseline, U-Net, U-Net with ImageGAN, ResNet-6, ResNet-9, ResNet-50, and ground truth map images

5.2 Model Evaluation

Mean Squared Error The pixel by pixel Mean Square Error (MSE) between the generated images to the ground
truth map images is calculated for baseline, U-Net, ResNet-6, ResNet-9, and ResNet-50 generators, as shown in Table.
1 . ResNet-9 has the lowest MSE, which means it is the closest to the ground truth.

t-SNE T-Distributed Stochastic Neighbor Embedding (t-SNE) dimension reduction technique is employed to visualize
the distribution of generated images. We randomly choose five generated maps from each generator and project
them into 3-dimensional space [11], shown in Figure. 4 . Since the image-to-image variation is greater than the
model-to-model variation, the generated maps of each input image are clustered together. In most cases, the results
from ResNet-9 are closer to the ground truth, which is consistent with our observations and MSE calculations.

@ Groundtruth
Baseline
A UNet
< <« ResNet-6

Model MSE e biretiets
Baseline 1.5661 x 102
U-Net 1.5058 x 102
ResNet-6 1.3298 x 102
ResNet-9 1.1969 x 102
ResNet-50  1.5848 x 1072

Figure 4: t-SNE plot of 5 random generated images from
Table 1: Mean Squared Error of generated images different models and ground truth



5.3 Discriminator Score

To have a deeper understanding of how our model performs, we visualize the discriminator scores of ResNet-9 generated
images and ground truth images from training set as shown in Figure. 5 (left two). We see that the discriminator does a
good job in classifying the majority of the ground truth images as real, and most of the generated images as fake. We
suspect the score distribution shown in Figure. 5 (left two) is an indication of the discriminator performing better than
the generator, so we experiment with letting the generator train more often by updating the discriminator every 3 steps
the generator updates. As a result almost all images are classified as real by the discriminator (Figure. 5 right two).
Interestingly, neither visual nor quantitative evaluation show obvious difference from this change. This indicates L1
loss might be more dominant than the adversarial loss in our overall loss objective.
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Figure 5: Discriminator scores of ResNet-9 generated and ground truth images from training set. Left two plots show
updating D every step; right two plots show updating D every 3 steps.

5.4 Learning the Default from Unpaired Data

When we ran the model on GPU for the first time, the input images and target images read by our Datal_oader were not
paired. After training for 100 epochs, we found that the generated images were all the same!

Figure 6: Input, target, and generated images when the input and target images are not matched.

The model did not learn anything meaningful about aerial-to-map translation but to generate a "default" image that has
the minimum loss with all the target images in the training set with any input image. After sorting the images in our
datasets, our model was able to process paired input and target images and generate reasonable results after training, as
shown in section 5.1.

6 Conclusion and Future Work

C-GAN is an effective solution for translating image from one visual domain to another. Our residual-based networks
outperform U-Net model and baseline in aerial-to-map translation. Residual connection not only makes deeper networks
easier to train, but also allows learning to be more end-to-end in the sense that the model chooses where to keep or
discard information from the previous layer at any point, while U-Net is forced to only pass information from the first
layer to the last and so on.

The applications of C-GAN are not limited to aerial-to-map translation. C-GAN can be applied to translations between
other domains of images such as black/white to color, and has potential in image segmentation tasks.

Future work include exploring residual-based network for discriminator, and experimenting with dynamic training
frequency to allow generator train more often than discriminator in the beginning and gradually slow down. We would
also like to explore adding more random noise to the generator to help capture the full entropy of the conditional
distributions.
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components and visualization. Zhouchangwan worked on the architecture of generator and discriminator. Jason worked
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Our code is on GitHub at https://github. com/yuzhoucw/230pix2pix.
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