Predicting mortgage loan delinquency status

Ksenia Ponomareva
Department of Computer Science
Stanford University
kp260@stanford.edu

Abstract

Monitoring of loan performance and early identification of high risk consumers
aids prevention of loan defaults and is of interest to many banks and investors.
For banks especially, timely monitoring ensures regulatory compliance as well as
adequately quantifying its risk, accurately calculating its capital and setting aside
proper reserves. With this goal in mind, four multi-classification models have been
built that take as input characteristics of a loan at inception as well as information
about the first twelve monthly payments and predict the status of these payments
over the next twelve-month period.

1 Introduction

There is an extensive literature on application of machine learning algorithms to credit scoring, where
a model determines relationship between default and loan characteristics. Once built, this model is
used to predict the probability of debt being repaid by the obligor. Review and comparison of these
types of models are provided in [1]-[3], with [4] focusing on assessing mortgage risk using a deep net
and [5] using a convolutional neural network.

As can be seen from these papers, most publications in consumer lending applications cover binary
classification, where a loan either defaults, or alternatively becomes severely delinquent, defined
as having payment delayed by six months and more, or it does not. There are several reasons for
considering multi-classification problem instead. Firstly, a lot of information is lost if only default
and non-default states are taken into account. For example, a loan with no missed payments has
a different creditworthiness profile from a loan where payments are late by one month only, but
occurring several times during the life of the loan. Differentiating between these profiles would allow
more accurate tailoring of credit terms and conditions as well as enable early warning signal detection,
since borrowers are likely to transition through different credit profiles throughout the term of the
loan. In this paper residential mortgage loan data has been used, but model architectures described
here can be applied to other type of loans as well, provided a suitable dataset is available for training.

2 Dataset and Features

Publicly available Fannie Mae single family loan performance data [6] has been used for this
project. The population considered contains a subset of Fannie Mae’s 30-year, fully amortizing, full
documentation, single-family, conventional fixed-rate mortgages. This data provides information
about mortgage loans issued between 2000 and 2016 and their performance, e.g. late payments in
months, up to the fourth quarter of 2017. Original mortgage rate for each example has been scaled
by the average 30-year federal funds rate for the corresponding quarter to enable comparison of

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

mortgage loans issued over this 17-year period.

The following eight features have been selected from the available 24 fields characterizing the loan:
the original rate, the original amount, the original loan-to-value (LTV), the number of borrowers, the
debt-to-income (DTI) ratio, the credit score of the borrower, the first three digits of the zip code and
the mortgage insurance percentage. These features have been normalized to speed up training. Please
note that this information is not updated throughout the considered two-year period of the loan term.
Additionally, loan monthly payment performance information over the first twelve months of the loan
term is utilized. Altogether, this makes up twenty input features.

The ground truth output has seven classes with values ranging from zero to six and is based on the
actual loan performance over the month 13 to 24. Loan payment performance information indicates
the number of days, represented in months, the obligor is delinquent as determined by the governing
mortgage documents. Here 0, for example, represents loan that is current or is less than 30 days
past due and sequence continues thereafter for every thirty-day period. Class 6 indicates that pay-
ment is delayed by six or more months and the underlying loan is considered to be severely delinquent.

In the original dataset with ~ 4 million entries roughly 96% of entries belong to class 0, as is
expected, since most people would make payments on time in the first two years of their mortgage.
However, this dominance of class 0 poses some challenges for training, such as model would tend to
predict this class all the time to minimize the loss. In order to ensure that training dataset is more
balanced, class 0 examples were sampled from the original dataset to represent ~ 50% of the whole
training dataset. Histogram of frequency of each class in the balanced training dataset is shown in
figure 1. Proposed solution to deal with training an imbalanced dtaset is discussed further in section
3.5.

Histogram of mortgage loan delinquency status

05 4

044

o
w

Frequency

o
N

o
-

00 -
0 L 2 3 4 5 6
Classes

Figure 1: Class frequency distribution in train set

Only entries with complete information were used and records where loans were terminated prior to
month 24 were discarded. Finally, 730112 data entries were split into 90% used for train set, 5% for
dev set and 5% for test set.

It is worth noting that in order to predict loan payment delinquency status it is possible to use only the
eight features discussed above. However, adding information about the payments for the first twelve
months of the loan term allows comparison between very different model types and architectures.

3 Methods

Different model architectures are considered for mortgage payment delinquency status prediction
problem. The definition of the problem and the dataset available enables comparison of four different
multi-classification model architectures, which have been implemented using TensorFlow, [7], with
code stored in a github repository, [8]. These are a basic baseline model, a deep neural network, a
one-directional LSTM recurrent neural network and a one dimensional convolutional neural network.

Accuracy metric, > 1.0 (v)—argmaz (v, Which is averaged for all the examples in the dataset, is

used for comparison of models’ performance. Here Y is the prediction, Y is the true label and I is an
indicator function. Figures 2-5 show high-level architecture for each model and further details are

provided below.
g "

Figure 2: Baseline model architecture

Input, length = 20
v

Conv. 32 filters
with size =5

Max pooling,
size=3
L j

Conv. 64 filters
with size =3

>
Hidden layers

1
Max pooling, Figure 4: DeepNN model architecture
size =2
v

FC with output
size=7

¢ So
T
; Fr T

X1 X2 X11 X12

ax

—>§—> >

Figure 3: CNN model archi-
tecture Figure 5: RNN model architecture

3.1 Baseline

Baseline is the simplest architecture considered here and has a single node, as shown in figure 2.
Model uses input with 20 features (eight loan characteristics at inception and performance of the first
twelve monthly payments), a linear transformation and a softmax activation function to produce a

prediction, Y, probability distribution over seven classes:
Z=WX +0b,
Y = softmaz(Z).

3.2 Deep neural network

Deep neural network (DeepNN) model has three hidden layers, as shown in figure 4, with 100, 50
and 10 nodes respectively. All activations are ReLU apart from the final one.This model has the same
input and output, final activation function and accuracy metric as the baseline model. By introducing
several hidden layers, the model is expected to capture relationships between features and classes
better and hence provide some improvement to the baseline results.

3.3 Convolutional neural network

Convolutional neural network (CNN) model uses a one dimensional structure inspired by [5] and has
two blocks of convolutional and max pooling layers, followed by a fully connected layer, as shown in
figure 4. Activation functions for layers other than final are ReLU. Input is 20x1 (8 loan application
features and 12 monthly payments) and output is 7x1 based on the softmax final activation function.
The first block has one convolutional layer with 32 filters with size 1x5, stride 1 and same padding,
then max pooling layer with filter size 1x3, stride 1x2 and same padding. The second block has a
convolutional layer with 64 filters with size 1x3, stride 1 and same padding, then max pooling layer
with filter size 1x2, stride 2 and same padding.

3.4 Recurrent neural network

Recurrent neural network (RNN) model is a many-to-one LSTM with a softmax activation applied
to the last output only, as shown on figure 5. The input sequence has twelve items, one for each
month of the observable monthly mortgage payment performance in the first year of the loan. Each
of the inputs has nine features, eight loan characteristics, which are the same for each input, and one
monthly payment performance for the relevant month. LSTM hidden layer has 200 units. This model
is one directional since the order of loan monthly payment statuses is very important. Many-to-one
architecture is used since prediction is needed for the payment status over the second year of the loan
term and not for each consecutive month in the first year.

3.5 Weighted loss function

Given class imbalances in the training data, as shown in figure 1, model would tend to predict
everything as class 0 to minimize the loss. In order to address this issue, loss function needs to be
re-weighted to apply higher penalties for getting wrong predictions for classes 1 to 6 compared to the
dominant class 0. Median-frequency re-weighting, introduced in [9], is applied here and is calculated
as follows:

a. = median_freq/ freq(c).

Here freq(c) is the number of examples of class ¢ present in the mini batch divided by the total
number of examples in the mini batch and median_freq is the median of all class frequencies in the
mini batch. In the training procedure, each example’s softmax cross-entropy loss is multiplied by the
coefficient, o, according to the label’s class, c. Therefore the dominant labels will be assigned the
lowest weight which balances out the training process.

4 Experiments

Models have been iterated over various hyperparameters and network structures to provide the best
test accuracy. The following configurations have been run for all models:

e A set of learning rate values, [0.01, 0.001, 0.0001].

e Batch size in the range of [32, 1024].

e Number of units in the LSTM cell, [10, 50, 100, 200], for RNN model.

o Number of hidden layers in the range [3, 5], and units in the range [10, 200], for the DeepNN
model.

e Number of different filter and stride sizes for the CNN model.

e ReLU and tanh activation functions for intermediate layers.

o Gradient descent, Adam and Adagrad optimizers.

The best results have been achieved achieved with learning_rate = 0.001, batch size = 128 and
model architectures as described in sections 3.1-3.4.

It is worth noting, that since variance turned out to be small for all models, application of regularization
methods was not considered necessary.

5 Results

All models have been trained over ten epochs and results for training and test datasets are provided in
the table below.

Accuracy Baseline | DeepNN | CNN | RNN
Training Accuracy | 53.3% 60.8% | 60.5% | 60.8%
Test Accuracy 53.8% 61.1% | 61.0% | 61.3%

Examining results, a number of observations can be made. First of all, all models tend to perform
better on the test set than the training set. This can be explained by the fact that proportion of class
0 examples is higher in the test set, 50.2% vs 48%, and all models tend to have a higher accuracy
in predicting class 0 compared to other classes, due to class imbalance in the training dataset. The
second observation is that accuracy for all models exceeds 48% which means that some of the classes
1-6 are predicted correctly. Finally, DeepNN, CNN and RNN model show an improvement over the
baseline, with a small variation of results between them.

6 Conclusion

Although DeepNN, CNN and RNN models perform better than the baseline, they can be further
improved in the future by further fine tuning the hyperparameters (number of layers, hidden units,
filter number and size, learning rate) and using F1 score for each class prediction to find the best com-
bination. Additionally, considering more than the first twelve payments as features or supplementing
with current/savings/credit account data as in [2] might help improve models’ performance. Finally,
using an even more balanced sample from the data available might be worth consideration.

References

[1] Garcia, V., Marqués, A. 1., & Sanchez, J. S. (2014). An insight into the experimental design for credit risk
and corporate bankruptcy prediction systems. Journal of Intelligent Information Systems, 44 (1), 159-189.

[2] Lessmann, S., Baesens, B., Seow, H.-V., & Thomas, L. C. (2015). Benchmarking state- of-the-art classifica-
tion algorithms for credit scoring: An update of research. European Journal of Operational Research, 247 (1),
124-136.

[3] Yeh, I. & Lien, C., (2009) The comparisons of data mining techniques for the predictive accuracy of
probability of default of credit card clients, Elsevier Expert Systems with Applications, 36, 2473-2480.

[4] Sirignano, J., Sadhwani, A., & Giesecke, K. (2016). Deep Learning for Mortgage Risk. ArXiv e-prints
http://adsabs.harvard.edu/abs/2016arXiv160702470S.

[5] Kvamme, H., Sellereite, N., Aas, K. & Sjursen, S. (2018) Predicting mortgage default using convolutional
neural networks, Elsevier Expert Systems with Applications, 102, 207-217.

[6] https://loanperformancedata.fanniemae.com/lppub/index.html.
[7] https://www.tensorflow.org
[8] https://github.com/ksenp260/mortgage_payment_status

[9] Eigen, D. & Fergus, R., (2015) Predicting depth, surface normals and semantic labels with a common
multi-scale convolutional architecture, arXiv:1411.4734v4.

