Captioning Video Events with NetVLAD

Julio A. Martinez Parker Miller Songze Li
ICME, Stanford University =~ Law School, Stanford University =~ ICME, Stanford University
juliomz@stanford.edu pmillerO@stanford.edu songzeliO@stanford.edu
Abstract

Understanding video content has a variety of use cases from video query search
to ad content matching. In this project we explore captioning events that occur
in different segments of video. We start with a baseline implementation that was
done for our other course (CS230) and use a different attention module known as
NetVLAD to pool preprocessed C3D features that represent video segments. We
are able to show NetVLAD yields better performance than our baseline by BLEU
score on a small subset of the Activity Net Captions dataset.

1 Introduction

The objective in this work is to describe events that occur in videos using natural language. We seek
to do this with a variant of learnable pooling known as NetVLAD. Several applications of this work
are interesting, such as being able to search a video for a specific segment wherein a particular action
occurs, or match the content of the video with ads that are relevant.

2 Related work

Activity recognition has historically involved using hidden Markov models and discriminative SVM
models to describe events with a fixed label set [8} 9l [15}2]. Some have used deep learning to further
study video event actions [16]. In our approach we use similar methods, but our goal is to describe
video events with natural language using a larger vocabulary. Traditionally, temporal action proposal
methods used a sliding window approach [14]], but later evolved to build proposal models that used
dictionary learning [6] or RNN architecture [[18] to locate potential action segments. These methods
required processing for each video frame in the sliding window. Rather than use this sliding window
approach, we output proposals for every time-step in a single pass of the video. We believe this
model is more efficient. There have been various approaches to video captioning. Notably, a paper
recommended describing videos with paragraphs, where an RNN generates hidden vectors that then
initialize lower-level RNNs that generate individual sentences [[17}[7]. Our work is similar to this
approach, but we attempt to caption events using a different dataset [1]], ActivityNet Captions.

3 Dataset and Features

For both courses we use the same dataset ActivityNet Captions. Although the dataset contains 20k
videos which amount to 849 hours and 100k captions, we use approximately 10% of the dataset with
2000 videos to train with, 250 for dev, and 250 for testing. Since the entire dataset is large, we make
sure to select videos in dev and test set whose captions have words with high frequency of appearance
in the 2000 training videos.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

3.1 Preprocessing

7For preprocessing we simply group the C3D frames by video and by event. Thus each video has
a sequence of video segments which contain 500-dimensional C3D-PCA features representing the
frames in the segment. To give context, these C3D features are extracted from a C3D model and
then reduced using PCA. This is provided on the Dense Captioning Events in Videos webpage. Each
segment outlining an event has a distinct duration, thus the number of frames and hence feature
representation that correspond to an event varies. We limit the number of events to 10, and in each
event we limit the number of feature frames to 2000, meaning each event could be up to 2000 frames
long. For segments not meeting this requirement padding of zeros is added at the end. The number
of words in a caption (the sentence length) is limited to 30. For captions not meeting these two
requirements, we truncate or pad the sentence at the end accordingly. Finally words found in the label
captions corresponding to these event segments are tokenized, meaning each word is mapped to a
unique integer as done in [10]. The set of words plus three additional tokens, one to indicate <start>
and one to indicate <end> of a caption, and padding <pad>, make up the vocabulary, which has
cardinality 10,999.

4 Methods

This project involved implementing two network, first the baseline method found in [11]] and second is
a variation that uses NetVLAD (which is the portion done for this course, baseline was implemented
to satisfy CS231N). The general pipeline goes as follows: Input: C3D Features — NetVLAD —
2-Layer LSTM —. For understanding the baseline, see report from CS23N. The main difference is
instead of learnable pooling as will be discussed they use max pooling over frame features and then
attention to arrive a features vector that represent the segments.

4.1 Baseline Attention Module

The first step is the Attention step. In the baseline, C3D features for the video segments are max
pooled temporally. Thus a sequence of 2000 500-dimensional features representing a segment are
pooled into a single vector using the maximum values. These are then denoted h; for the ith video
segment. The max pooling is not mentioned in [[L1]; however, after meeting with Ranjay Krishna,
it was clear this is the approach taken in that work. Sufficeth to say that the resulting vector is a
concatenation of future, past, and present segment information that is of dimension 1500, 500 for
past, present and future each. See CS231N paper for details.

4.2 NetVLAD Attention Module

NetVLAD (i.e neural network of vector of locally added descriptors) is a form of attention and
learnable pooling that has been used successfully in video-level tagging [12]. NetVLAD learns
clusters in the input features and computes residuals from each temporal input feature to the cluster
centers ¢, and multiplies this residual to a softmax. The number of clusters in NetVLAD is a
hyperparameter and each cluster center is randomly initialized. Therefore the resulting clusters are
found from the backprop step. Hence the best cluster centers for the model are found through training
as discussed in [4]]. These computed values are then aggregated temporally. This results in a matrix
V LAD which we flatten and denote the result as X

N
VLAD(j,k) = Z softmax(h;)(hij — ck;) (1)
CGX)=c(WX +b)x X. 2)

Context Gating, an activation function, is a combination of an element-wise sigmoid with element-
wise product to flattened V LAD features X, as shown below. This introduces yet another quadratic
relationship between the features. As opposed to the attention from baseline where video segment
features are maxpooled, here NetVLAD and context gating are used to aggregate these feature frames
in a nonlinear way. The output is a pooled representation of dimension 500 that is learned, as opposed
to 1500 in the baseline. Figure|l|shows the attention module using NetVLAD and context gating.

T

sﬁulnpaqwg PIOM

Layer 2
Layer 1

© ﬁii
Repeated proposal features vector @I @ I @I @I @ I

(a) Tiling Concatenation (b) 2-Layer LSTM Input

T

saimeaq 1esodo.|d

Figure 2: 2 Figures side by side

4.3 Captioning Module

The output from the attention module is the
input to the captioning module. The output
from NetVLAD is a 500-dimensional vector,
one which represents the entire event in a seg-
ment of a video.

In addition, word embeddings are used with 512
units. This is done with the model end-to-end.
Since each caption is limited to length 30, each
segment corresponded to a caption of at most 30 —J NewLAD Cotext |
words.

A 2-layer LSTM network is used to learned
captioning structure. The LSTM run for 30
timesteps since these are the lengths of each
Caption. At each time step the LSTM is fed a Proposal C3D Features Learnable Pooling Pooled Feature ~ Activation
concatenation of the word embedding and the

NetVLAD output for the entire video segment. Figure 1: NetVLAD with Context Gating Pipeline
See figure [2Ja) to see the concatenation process.

500 dimensional vectors
500 dimensional vector
500 dimensional vector

This concatenation is done by first tiling the

segment representation 30 times, one for each

word in the caption. This way each word embedding is concatenated to the same vector. This allows
the network to have the same information of the entire video segment at each step producing words
based on the visual information as well as words already predicted. The 2-Layer LSTM is set to have
512 hidden units and the hidden states are initialized to zero. A subsequent softmax layer is computed
over each step of the 2-layer LSTM. This softmax layer has 10,999 units, in order to produce a score
for each word in the vocabulary (i.e. size of vocab is 10,999). A diagram is found in figure [Z(b) to
illustrate the input at each time step during training to the two layer Istm.

4.4 Greedy Caption Generation

For this course we implemented greedy caption generation. During training time, all dimensions
are fixed except for the length of captions in Tensorflow which we set at "None", this way we can
iteratively increase the length as we generate captions. Thus at the first time step a concatenation of
a start token and the segment feature are fed. The softmax of the LSTM produces scores for each
word in the vocabulary. The next word is chosen by simply taking the maximum score, and the next
input is the first input concatenated horizontally with the predicted output. This continues until an
< end > word embedding is reached. Keep in mind the LSTM is trained such that each caption
starts with a < start > word embedding. This mode generation allows us to output captions of
different lengths which we can then compare to the ground truth.

Caption Generation is used only during the test stage, so that we can generate word by word based on
the past corpus.

In addition to this greedy selection of words, we also implemented beam search for CS231N. Briefly,
beams search expands upon greedy search by choosing a most likely sequence of words instead of
just the most likely word one step at a time. We choose a beam size of 3 to see an improvement but
still computationally achievable within a reasonable amount of time, since longer sequences are more
expensive to compute.

4.5 Optimization and Loss Function

Cost function used is the mean cross entropy. We implemented our own cross entropy function as
well to reduce effect of padding. After testing we found little effect from padding and decided to
use tensorflow cross entropy loss. Initially longer caption sequences and larger number of video
segments had more of an effect due to padding. By reducing these sequences, we were able to train
our model much more effectively. Two optimizers were tried and tested. First gradient descent
with momentum. Momentum was set to 0.9. We noticed the loss values overshoot and take a very
long time to minimizing the loss. Instead Adam optimizer with default betal=0.9,beta2=0.999, and
epsilon=1e-08 proved to be much more effective. Learning rate was manually decreased by a factor
of 0.1 starting at 0.01. You can see figure [3]where sudden drops occur are when learning rate was
changed and thus improved learning speed.

S Experiments

Here we report on results for both baseline of CS231N and NetVLAD. We tested our work on greedy
and beam search. We also show some generated captions to illustrate their quality. For training we
used the train and dev set to tune hyperparameters. We tested a 1 and 2 Layer LSTM. 1-layer was
unable to drive the loss down like the 2-layer to reach a good performing model. Batch size was
chosen to optimize GPU performance, this was set to 25. Note that for each example video, there are
10 segments, so each batch in reality has 250 video segments. A larger batch size was unable to fit
due to memory constraints. Smaller batch sizes were much more stochastic but not more effective at
lowering the loss. Just as in CS231N baseline, early stopping was used to select the best checkpoint
or model to generate captions with and evaluate the test. Seeing our reference plot in figure [3]that
at 70 epochs, the best model was chosen. In addition, NetVLAD required the number of clusters to
train on. We experimented with 2", for n= 1, ..., 7. These tests are expensive to run, so we only ran
our best estimates all the way. All others were run sufficiently to see differences in ability to reduce
the loss. We ultimately chose 32 clusters which gave us good results.

6 Results

Table of results is shown in table 1. We evalu-
ate captions based on BLEU metric using uni-
grams, bi-grams, 3-grams, and 4-grams which . -
we denote as B1, B2, B3, and B4. We believe e
NetVLAD was effective in outperforming base-

line due to its inclusion of nonlinearities. Be-

fore the LSTM, the baseline simply computes 1
attention over proposals. So it is very effec- g
tive at drawing together relationships of the past %
present and future segments in generating its
captions. However, NetVLAD only focuses on

each segment without future or previous knowl-

edge, instead only knowledge of the segment Epoch

itself. The feature that represents the segment

however is pooled in a nonlinear way and passes Figure 3: Loss over number of epochs in
through context gating with help find interac- NetVLAD model

tions that give context to the LSTM while. An-

other drawback of the baseline is that it simply

Train and Validation Loss

pools segments together. So although it has future and past information, that future and past informa-
tion may be very ambiguous after the temporal max pooling is done. NetVLAD pools in such a way
to reach its objective, to lower the loss. A more fair comparison would be to use entire training, dev,
and test sets. We do expect however for all results to improve even more with the entire set.

Bleu Mean Values on Test Set
Model B1 B2 B3 B4
Baseline-Greedy 0.531 | 0.516 | 0.523 | 0.540
Baseline-Beam 0.542 | 0.533 | 0.554 | 0.585
NetVLAD-Greed || 0.537 | 0.531 | 0.520 | 0.519
NetVLAD-Beam || 0.607 | 0.589 | 0.592 | 0.598
Table 1: BLEU mean values for n-grams of 1, 2, 3, and 4, for test set. set

7 Discussion

We would like to point out some key differences in the baseline from CS231N and NetVLAD. Figure
[shows some generated captions using greedy output (the captioning generator we implemented for
this class). This first example shows a man in the yard doing some yard. The ground truth is that he
is giving instructions on lawn and garden care. However this is not apparent until one watches the
video and hears the audio. Baseline from CS231N predicts similar words, but does not make sense.
NetVLAD with CG on the other hand predicts dissimilar words but the content makes more sense "a
man is shown wandering through the yard." While this is not particularly correct, it is reasonable to
expect. A weakness of NetVLAD however is not being able to tie together context from previous
video segments since it does not have this information in the LSTM. This is evident in the third
example where the word "also" ties together information from the past in the baseline. NetVLAD is
not able to pick this type of information. A really interesting part to note is that although baseline and
NetVLAD has same number of training examples, notable difference are that NetVLAD learns new
sentences that make sense while baseline is trying too much to be correct, could be sort of overfitting
due to having very similar dev and train set. See example two, where baseline repeats many words
such as "violin", "ending", and, "the" and never outputs an < end > token. NetVLAD on the other
hand produces still a very different caption but is 100% accurate from an description standpoint.

8 Conclusion/Future Work

In conclusion, we have shown improvement via
BLEU scores using NetVLAD over the baseline,
however only on 10% of dataset. Training on
entire set would be more conclusive to test the
effectiveness of our model. Future work isto * =~ e
consider METEOR and CIDEr metrics in ad- Sl he e down ahing e on lawn and sarden car i anct
dition to BLEU. Also extending this work to
combine strengths of NetVLAD in pooling C3D m m "
features and baseline attention to pool proposals

. Ground Truth: the woman stops. nlly Sk and sm(hs Shies ety bﬂou walking out of view of the camera
may prove very effective. eaaea: 10 Sare Pyt] vl S i s kb ek oo i e e

putting pu pumng vlolln viotin vlnlln vlolln ending ending the the the the the the
NetVLAD: laying and smiles once down into the camera putting the violin down
lnd -nulng m- mng o>

» c o] T+

See Course Project GitHub Repository. All cod- — omer™™ et b beiecive doves on et e rown i coor sonic
ing was written by project members with three - mpe—
exceptions: the deep action proposals (demo
purposes only) are from Github from [3]], the
C3D features and labels are from json files on
the Dense-Captioning Events in Videos website,
and the NetVLAD is from the LOUPE directory
from [13]]. The deep learning framework used
throughout the entire project was Tensorflow [3].

Figure 4: Generated Captions

10 Contributions

The group had contributions from everyone in the group. Some group members focused more on
strengths and backgrounds. Parker Miller played a role in report writing and idea generation, Julio
Martinez in Tensorflow coding, cloud and GPU setup, and designing the neural network architecture
including the use of NetVLAD. Songze Li helped with CS231N aspects which included the baseline
and Beam Search Caption Generator. However, all group members contributed to the project.

Contributions for class are as follows:

o CS231N/CS230: Report Writing by Parker Miller, Julio Martinez, and Songze Li
e CS231N/CS230: Idea Generation: Parker Miller, Julio Martinez

e CS231N/CS230: Preprocessing by Julio Martinez and Songze Li

e CS 231N: Baseline started from no source code all in tensorflow by Julio Martinez
e CS 231N: Beam Search Caption Generator by Songze Li

e (CS230: NetVLAD and Context Gating adaption and caption module to work with NetVLAD
by Julio Martinez

e (CS230: Greedy Caption Generator by Julio Martinez
e CS231N/CS230: BLEU scoring function by Julio Martinez

References
[1] W. Qiu A. Friedrich M. Pinkal A. Rohrbach, M. Rohrbach and B. Schiele. Coherent multi-

[2

3

[4

[5

[6

[7

(8

]

[

—

—_—

—_—

]

—_—

sentence video description with variable level of detail. In German Conference on Pattern
Recognition, pages 184—195, 2014.

M. Ranjbar A. Vahdat, B. Gao and G. Mori. A discriminative key pose sequence model for
recognizing human interactions. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE
International Converence, pages 1729-1736, 2011.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ilan Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad: Cnn
architecture for weakly supervised place recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5297-5307, 2016.

Victor Escorcia, Fabian Caba Heilbron, Juan Carlos Niebles, and Bernard Ghanem. DAPs: Deep
Action Proposals for Action Understanding, pages 768-784. Springer International Publishing,
Cham, 2016.

J.C. Niebles F. Caba Heilbron and B. Ghanem. Fast temporal activity proposals for efficient
detection of human actions in untrimmed videos. In Proceedings of the IEEE International
Conference on Computer Vision and Patter Recognition, pages 1914-1923, 2016.

Z.Huang Y. Yang H. Yu, J. Wang and W. Xu. Video paragraph captioning using hierarchical
recurrent neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4584-4593, 2016.

J. Ohya J. Yamato and K. Ishii. Recognizing human action in time-sequential images using hid-
den markov model. In Computer Vision and Patter Recognition, 1992. Proceedings CVPR’92.,
1992 IEEE Computer Society Conference, pages 379-385, 1992.

[9] C.W. Chen J.C. Niebles and L. Fei-Fei. Modeling temporal structure of decomposable motion

segments for activity classification. In European conference on computer vision, pages 392405,
2010.

[10] Justin Johnson, Andrej Karpathy, and Fei-Fei Li. Densecap: Fully convolutional localization
networks for dense captioning. CoRR, abs/1511.07571, 2015.

[11] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. Dense-
captioning events in videos. In Proceedings of the IEEE International Conference on Computer
Vision, volume 1, page 6, 2017.

[12] Antoine Miech, Ivan Laptev, and Josef Sivic. Learnable pooling with context gating for video
classification. arXiv preprint arXiv:1706.06905, 2017.

[13] Antoine Miech, Ivan Laptev, and Josef Sivic. Learnable pooling with context gating for video
classification. arXiv:1706.06905, 2017.

[14] J. Sivic F. Bach O. Duchenne, 1. Laptev and J. Ponce. Automatic annotation of human actions in
video. In Computer Vision, 2009 IEEE 12th International Conference, pages 1491-1498, 2009.

[15] H. Pirsiavash and D. Ramanan. Parsing videos of actions with segmental grammars. In
Proceedings of the IEEE International Conference on Computer Vision and Patter Recognition,
pages 612-619, 2014.

[16] L. Seidenari S. Karaman and A. Del Bimbo. Fast saliency based pooling of fisher encoded
dense trajectories. In ECCV THUMOS Workshop, volume 1, 2014.

[17] L. Burget J. Cernocky T. Mikolov, M Karafiat and S. Khudanpur. Recurrent neural network
based language model. In Interspeech, volume 2, page 3, 2010.

[18] J.C. Niebles V. Escorcia, F.C. Heilbron and B. Ghanem. Daps: Deep action proposals for action
understanding. In European Conference on Computer Vision, pages 768—784, 2016.

CS231N

Songze Li
Stanford University, ICME

songze@stanford.edu

Abstract

Video content metadata have a variety of use cases such
as video query search, ad content matching, and video mul-
timedia editing. In this work the content metadata of inter-
est are event descriptions. The objective is to take a video
and produce captions that describe the events that occur
given sequences of C3D feature representations of video
frames. Our baseline implementation is from the Activity
Net benchmark for dense captioning events in videos. We
show that replacing the attention module in the baseline
with NetVLAD can produce similar, and potentially better
results. We evaluate predicted captions of our models using
the Bleu metric with n-grams of n = 1,2, 3, and 4 for direct,
sampling and beam search predictions. A method to visual-
ize the attention relationship between word and proposals
is also proposed.

1. Introduction

We investigate dense-captioning, or the description of
events, in videos. The problem we face is how to bet-
ter describe video events with natural language using past,
present, and future events within a given video.

Several applications of this work are interesting, for in-
stance, being able to search a video for a specific segment
wherein a particular action occurs, or match the content of
the video with ads that are relevant. In addition, the project
is motivating as we plan to submit our work to the Activi-
tyNet competition.

While in computer vision, training neural networks to
recognize images has been done quite effectively, training
them to understand sequences of images and the context of
nearby events is a newer challenge. A neural network ca-
pable of this task could prove useful in data analytics, data
automation, security, and other fields.

In an application setting, the inputs of our work are video
frames, and the outputs are captions, or natural language
that describe the events taking place in segments of the
video where events take place. Specific to our model, the
inputs are C3D feature representations of video segments

Julio A. Martinez
Stanford University, ICME

juliomz@stanford.edu

Dense-Captioning Videos with Learnable Pooling

Parker Miller
Stanford University, Law School
pmillerO@stanford.edu

extracted by a pre-trained C3D model and timestamps that
correspond to those features.

Our objective is to produce captions that describe action
events in videos by using learnable pooling methods that
pay attention to past present and future actions.

2. Related Work

Dense captioning of video events brings together work
done in temporal action proposals and video captioning.
Activity recognition has historically involved using hidden
Markov models and discriminative SVM models to describe
events with a fixed label set [9, 10, 17, 2]. Some have used
deep learning to further study video event actions [19]. In
our approach we use similar methods, but our goal is to de-
scribe video events with natural language using a larger vo-
cabulary.

Traditionally, temporal action proposal methods used a
sliding window approach [16], but later evolved to build
proposal models that used dictionary learning [4] or RNN
architecture [22] to locate potential action segments. These
methods required processing for each video frame in the
sliding window. Rather than use this sliding window ap-
proach, we output proposals for every time-step in a single
pass of the video. We believe this model is more efficient.

Beginning first in video retrieval with natural language
[14, 18] and moving to video summarization [21, 5, 13, 3],
the work done bridging video and language has historically
used low-level features like color, motion, or model objects
[7] to identify key segments. But these methods have often
been limited by small vocabularies and have not effectively
described video events.

There have been various approaches to video caption-
ing. Notably, a paper recommended describing videos with
paragraphs, where an RNN generates hidden vectors that
then initialize lower-level RNNs that generate individual
sentences [20, 6]. Our work is similar to this approach, but
we attempt to localize events in time and we use a signif-
icantly larger dataset [1], ActivityNet Captions. Addition-
ally, we use dense-image captioning to generate localized
descriptions of an image [8] and attempt to train our model
to recognize context, or the interdependency among events,

in a video.

3. Dataset and Features

We use a dataset provided by ActivityNet Captions. The
dataset contains 20k videos amounting to 849 video hours
with 100k total descriptions. Since we are limited in com-
puting resources, we do not train on the entire dataset. In-
stead, we randomly select 2000 videos from train, and care-
fully find 250 videos for validation, and 250 for test set that
are represented in the training set. We are able to select 250
validation and 250 test videos by setting a threshold on how
frequent each word in the validation and test captions ap-
pears in the training set. These sets are similar assuming
pixel C3D features also carry some similarity, however we
did not measure the similarity across features. This can be
done however using a cosine or 2-norm similarity measure.

3.1. Pre-Processing

The amount of work required to pre-process the data is
significant.

First, the input to our dataset are C3D features. We ex-
tract C3D features and use PCA for dimensionality reduc-
tion to produce 500-dimensional vectors, each of which rep-
resent a specific frame in the video.

Second, we group C3D frames by video and for each
video also by event. Thus for each video there is a se-
quence of events, each event contains a sequence of 500-
dimensional C3D-PCA features that represent a certain time
segment that start and end based on the labeled timestamps
tinit and t_end. Since the duration from ¢_init to t_end
varies, so does the number of 500-dimensional C3D-PCA
features that represent an event. Number of events per video
is limited to 10, and number of words in a caption is lim-
ited to 30. For videos not meeting these two requirements
we truncate or pad at the end accordingly (for sequences of
length less than requirement we add padding).

In addition, words found in the label captions corre-
sponding to these event segments are tokenized, meaning
each word is mapped to a unique integer as done in [1].
The set of words plus three additional tokens, one to indi-
cate <start> and one to indicate <end> of a caption, and
padding <pad>, make up the vocabulary which has cardi-
nality 10,999.

4. Methods

We implement two networks. One is the baseline
method found in [12] and second is a variation of this with
NetVLAD. The baseline was implemented from scratch
without any source code.

The general pipeline is as follows, Input: C3D Features
— Attention Module — Captioning Module — with Cap-
tion Generation done independently to produce captions.

The network pipeline for the baseline network is shown
in 1.

C3D Video features

Input Video Proposal module Proposals Output Captions

— I
= I
ta
» d A lady joins the man
it and sings along to
i the music.

Captioning Module

T Frames
2 [
. I T

Figure 1: Baseline network structure

4.1. Baseline Attention Module

The first step in the model is the Attention step. We
denote H as the event representation matrix composed of
pooled C3D-PCA features. We let the ith column of H be
h;. Then each h; is simply the max pooling across all C3D-
PCA feature vectors for the ith proposal. The max pooling
is not mentioned in [12] however after meeting with Ranjay
Krishna it was clear this is the approach taken in that work.
Thus, after the pooling, the ith column is a new single fea-
ture vector which represents the proposal.

This matrix H has dimensions 500xK for each video,
where K is the number of proposals (in this case K=10). In
the paper [12] the attention module is computed as follows:

1

ast __ end end
hf = Jpast Z]]‘{fj < f1 }aijhj @))
J#i
uture 1 en en
SIS = Wzl{fj > [Yaihy; ()
J#i
Where we have
Zifuture — Z]]-{f;nd > fl_end} (3)
J#i
w; = wahi + ba (4)
a;j = wih;)

and the ZP**" is analogous to Z; "™ for past data.
In order to compute this efficiently for one example, we
vectorized this in the following way:

W =W,H + b, (6)
A=WTH (7
Past _ H(Indpast " A)T/zpast 8)
gpast _ Z (Indpast) 9)

rTows

Where * represents element-wise multiplication and
IndP*t and Ind’“*“7® are matrices of 1’s and 0.
Ind’** = 1 indicates that f{"? < f¢"®. This can now
be run more efficiently in vectorized format in Tensorflow.

The attention module output Hout is simply the con-
catenation of the pooled representations of the C3D features
Hrest H and Hf“*%re each of size 500, resulting in a vec-
tor of size 1500 (Hout). This way, each column of Hout
includes information for the future, present, and past pro-
posals as (h{“twe, hi, hf“t).

4.2. NetVLAD Attention Module

NetVLAD (neural network of vector of locally added
descriptors) is a form of attention and learnable pooling
that has been used successfully in video-level tagging [15].
NetVLAD computes clusters in the input features and com-
putes residuals from each temporal input feature to the clus-
ter centers ¢, and multiplies this residual to a softmax.
These values are then aggregated temporally, resulting in a
vector that draws a nonlinear relationship between the fea-
tures it aggregates.

N
VLAD(j, k) = Zsoftmam(hi)(hij —ckj). (10)

Context Gating, is an activation function, in fact a com-
bination of sigmoid element-wise product and the input fea-
tures as shown below. This introduces yet another quadratic
relationship between the features.

CG(X)=o(WX +b)x X (11)

As shown below, in this case, instead of max pooling the
C3D-PCA feature vectors for a proposal, we use NetVLAD
and context gating to aggregate them in a nonlinear way.
Thus the result is a pooled representation that is learnable
of dimension 500, as opposed to 1500 with baseline which
concatenates future past and present feature,s each of di-
mension 500. Figure 2 shows the attention module using
NetVLAD and context gating.

4.3. Captioning Module

In the captioning module we initialized word embed-
dings uniformly at random to map each word from its in-
teger id to a vector using a fully connected word embedding
layer. We choose 512 dimensions consistent with work in
[12].

After the word embedding, where each word is mapped
from a one-hot vector to a 512-dimensional representation
which we denote Zembed.

For both baseline and NetVLAD attention schemes we
concatenate the proposal feature vectors with the word em-
beddings. In baseline, each proposal feature vector is 1500,

500 dimensional vectors
500 dimensional vector
500 dimensional vector

Context
Gating

— NetVLAD

Proposal C3D Features Learnable Pooling Pooled Feature Activation

Figure 2: NetVLAD with Context Gating Pipeline

thus concatenating it to each 512-dimension word embed-
ding in the caption leads to a 2012 dimensional vector. In
NetVLAD + Context Gating, the proposal feature vector is
500-dimensional and hence the concatenation leads to 1012,
in each case since the proposal feature is a single vector and
the caption is a sequence of word embedding features, we
tile the proposal feature vector to be same length as caption
and then concatenate. This make the concatenation to each
word embedding in the caption.

The next step in the caption module is the 2-layer LSTM.
Each hidden state is set to be 512-dimensional as in [12].
Hidden states use zero initialization. A each time step of
the LSTM the concatenation of the word embedding and
the feature vector are fed in as input.

After a softmax is computed over each step of LSTM
with 10,999 units (the number of classes) is computed to
give scores for each class (word).

4.4. Caption Generation

Caption Generation is used during the test stage, so that
we can generate work by word based on the past corpus.
There are several ways to generate the caption in our model.
A simple approximation is to use a greedy search that se-
lects the most likely word at each step in the output se-
quence. This approach has the benefit that it is very fast, but
the quality of the final output sequences may be far from op-
timal, because once if you get some wrong word it is harder
to get back to the real label again.The second approach to do
sampling, which mean we sample the next word by multi-
nomial distribution sampling.

Another popular heuristic is the beam search that ex-
pands upon the greedy search and returns a list of most
likely output sequences. Instead of greedily choosing the
most likely next step as the sequence is constructed, the
beam search expands all possible next steps and keeps the k

most likely, where k is a user-specified parameter and con-
trols the number of beams or parallel searches through the
sequence of probabilities. Common beam width values are
1 for a greedy search and values of 5 or 10 for common
benchmark problems in machine translation. Larger beam
widths result in better performance of a model as the mul-
tiple candidate sequences increase the likelihood of better
matching a target sequence. This increased performance re-
sults in a decrease in decoding speed.

To make the generation process faster, we take the beam
size 3.

4.5. Optimization and Loss Function

For the cost function the total cross entropy loss divided
by the number of proposals and number of mini batches was
used.

We tested two optimization algorithms. The first was
gradient descent with momentum. This lead to slow
progress. With such a large dataset there was not enough
time to compute this all the way. We noticed the loss would
start high and then progress slowly at first. We then tried the
Adam Optimizer. This resulted in much quicker progress.
However in both cases, train these large sets takes alot of
computation and memory. The learning rate was initialized
at 0.01 and reduced in a step-wise fashion by a decay rate
of 0.95 every few epochs. This decay was done manually
which corresponds to the kinks in the plot shown in figure
3

4.6. Evaluation

BLEU uses a modified form of precision to compare a
candidate or hypothesis caption against a reference caption.
In this case the hypothesis is the generated caption and the
reference is the ground truth caption. We use BLEU with
uni-grams, bi-grams, 3-grams, and 4-grams which we de-
note B1, B2, B3, and B4 respectively. The BLEU score is
only computed on test data generated captions.

4.7. Code

See Course Project GitHub Repository.

5. Experiments, Results & Discussion
5.1. Experiment Details

In this section we show our experiments and results
for the two main networks tested, the baseline and the
NetVLAD adaptation of the baseline, which we have dis-
cussed thoroughly above. In addition to these networks,
caption generators are also tested, greedy caption genera-
tor and beam search. Here we share a few examples to give
a qualitative analysis of the results, and give a discussion
about our choices of various hyperparameters.

To ensure each model is capable of learning, a first ap-
proach was to run the models on a small subset of the data.
We chose 100 videos from the training set. We ran 1000
iterations (this is computationally possible with 100 sam-
ples). This allowed the models to reduce loss to close to
Zero.

In addition, hyperparameters tuned in these experiments
were the number of LSTM layers, dropout, batch size, and
learning rate. Since we were limited in computing memory,
a batch size of 32 was large enough. Note that for each
video there are several video segments, in this case 10, this
batch size of 32 results in a 32*10 = 320 number of video
segments, which could be thought of as the true batch size.
We tried batch size of 1 (i.e. 1*10 = 100 video segments),
although much more stochastic, which is the size used in
[12], this value was too small to be computed in a practical
amount of time for this course, and does not take advantage
of GPU computing power since it relies more on sequential
learning in the for loop. 1-layer LSTM was tried before
2 layers, however, this network wasn’t capable of learning
well as the loss had a difficult time becoming as small as
the 1-layer network. In addition, a dropout wrapper applied
over the LSTM parameters was experimented with to better
generalize. However, we didn’t see much upside to using
dropout with keep probability of 0.5. You can see the source
code to verify dropout is implemented, we simply did not
ended up using it, i.e dropout keep probability was set to
1.0. Learning rate was adjusted manually by keeping a close
eye on the loss as it progressed, starting at 0.01, and slowly
decreasing it as needed as loss approached 0.0.

In order to not overfit, we trained our models until the
respective validation loss started to go up. This is referred to
as early stopping. As shown in figure 3, the optimal model
for NetVLAD model, for example, was at 70 epochs. Using
checkpoints, we were easily able to recover the best model
to test with.

5.2. Quantitative Results

We have found that NetVLAD is able to do slightly bet-
ter at captioning video segments than the baseline model.
This may be due to both the fact that NetVLAD learns how
to best pool features together, and also since Context Gating
add an extra activation. The baseline may lose information
in pooling a segment of features together, which may result
in a which is difficult to understand. The reason max pool-
ing may work in Convolutional Neural Networks is due to
still retaining understandable features. However if all fea-
tures in an image were pooled into 1 feature, this may not
result useful, the same may apply to segment max pooling.

NetVLAD performed slightly better overall than the
best performing captions, with respect to BLEU scores,
when using beam search. However both both baseline and
NetVLAD yielded better BLEU scores for captions gener-

Train and Validation Loss
= Val

= Train

ss Entropy Loss

Cro:

Epoch

Figure 3: Loss over number of epochs in NetVLAD model.

ated with beam search vs greedy search.

Bleu Mean Values on Test Set

Model B1 B2 B3 B4

Baseline-Greedy | 0.531 | 0.516 | 0.523 | 0.540
Baseline-Beam 0.542 | 0.533 | 0.554 | 0.585
NetVLAD-Greed || 0.537 | 0.531 | 0.520 | 0.519
NetVLAD-Beam | 0.607 | 0.589 | 0.592 | 0.598

Table 1: Bleu mean values for n-grams of 1, 2, 3, and 4, for
test set. set

Because we are only able to train on a portion of the
dataset, we expect our baseline results to be compromised
in comparison to those in [12]. However, because we intend
to only use this network as a baseline, we feel it could still
act as an effective measurement against our adjusted model.
Our hope is that the adjusted model’s performance will im-
prove upon the performance of the baseline model.

5.3. Qualitative Results

Below are shown a few selected example of NetVLAD
and Baseline captions predicted using beam search. As can
be seen, it seems baseline has a more difficult time gen-
eralizing the context and instead focuses more on correct
word prediction, while NetVLAD approach may result in
different words but in more meaningful expression such as
man “wandering through the yard” in the first example, or
”smiling once down into the camera”. While not entirely
the ground truth, it is reasonable. Both cases suffer from
giving as good results at discussed in [12]. This is expected
as the number of training examples is only 10% of the entire
dataset used in that work.

Our main motivation for using NetVLAD was that it re-
ceived 1st place in the Youtube-8M challenge in 2017 for
video-level tagging. NetVLAD performed so well mainly
because of the nonlinear pooling and context gating which
adds yet another quadratic relationship between the fea-
tures. This nonlinear pooling and activation allows the net-
work to gather in the context of the entire proposal more
effectively than a simple max pooling and linear attention
as done by the baseline. This is our best judgement for why
NetVLAD is able to come up with more variation in sen-
tences as compared to ground truth and baseline, but still
make sense. In the first example, ”a man is shown wan-
dering,” brings up many questions, one of which is that the
ground truth obviously includes information that is only no-
ticeable from the audio. Thus by looking at the video, it
is difficult to determine whether or not this is an instruc-
tional video or just some man “wandering” around in his
yard trimming the hedges, hence the NetVLAD output.

5.4. Attention visualization and Analysis

To capture the context from all other neighboring events
in our proposals, there are attention mechanisms in our net-
work, which allowed the present proposals to ”look into”
past proposals and future proposals to ”find” the connection
and thus generate the captions. In our work the concatena-
tion of [APet b, hfutur¢] and word embedding is used as
input to cells of LSTM. In this way, every word is a repre-
sentation of the whole proposals, which is encoded in the
output of LSTM.However, There is few literature about vi-
sualization of the video understanding and about which part
of the proposals is the attention paid by the word generated
by each cell of LSTM. An idea of visualization these at-
tention mechanism is first shown here and the results are
discussed.

To better understand how the caption is generated, it
is helpful to find how the output from LSTM cells H,q¢
attention to the hidden state representation of the image
[hPest b, hfuture] . Borrowed from the idea of attention
mechanism widely used in NLP. We took the dot product
between H,,; and hP?t h, hf"“tur¢ individually and get the
attention score of each word to the past, current and future
proposal, Att pgst, Attcurrent, Att Future. Since it is hard
to figure out what is the meaning of the vectors in hidden
presentation of C3D features , we add the attention scores
for each hidden presentation and normalize to make it a
value between 0 and 1, and we call it ”Attention Level”.
”Attention Level” is used to see how each word pay atten-
tion to past or future proposal relatively and thus to help us
understanding how the caption is generated.

Two typical examples are selected to show the attention
mechanism. The caption for the first proposal in Figure 5
is ’the man grabs a third empty glass and moves it”. If we
look into the curve for attention level, we can see the at-

Ground Truth:
Baseline:
NetVLAD:

another man is giving instruction on lawn and garden care <end>
he goes down giving slide on lawn and garden care little another <end>
a man is shown wandering through the yard <end>

Ground Truth:

the woman stops playing and smiles once more before walking out of view of the camera

putting the violin down and ending the song <end>

the woman stops playing and smiles once more before walking walking of of view the the

putting putting violin violin violin violin ending ending the the the the the the

NetVLAD:
and ending the song <end>

Ground Truth:
Baseline:
NetVLAD:

the woman stops playing and smiles once down into the camera putting the violin down

he also has protective gloves on that are brown in color <end>
he also has protective gloves on that are brown in color <end>
he has protective gloves on that are brown <end>

Figure 4: Generated Captions for Baseline and NetVLAD

tention for past and current is moving up for word third”,
while the attention for future is going down. It is very in-
teresting because it seems like the hidden state was count-
ing the number of glasses the man had picked during the
past and current proposals and neglecting the future event
in the future proposals, because the future proposals has no
relationship of the number of glasses in current proposal.
The similar behavior could also been seen in 6, we can see
from proposal one for the word "holding”, the attention for
the future and current is moving up compared to the past.
Similar behavior happens in proposal two, the attention to
current for word ”seen” and ”on” is high compared to past
and future, which means these words is ”seeing” the current
proposals more, which could also be intuitively understood.

6. Conclusion and Future Work

In conclusion, we have effectively shown that NetVLAD
can slightly improve BLEU scores for video events given
the event segment frame features. However, this was trained
on only 10% of the dataset and validated and tested in 250
videos. Although it performed good enough to see a few
good results, the performance in our view is not significant
enough to warrant one vs the other nor is the test a conclu-
sive enough test to understand the actual performance. In
addition the metrics used may not be sufficient enough to
validate the performance for all use cases. It remains to be
seen whether or not NetVLAD is as effective over baseline
at the full 20k videos. In future work we could also con-

sider other metrics which could expose further weaknesses
or strengths of NetVLAD and baseline methods. In addi-
tion, the paper did not implement a proposal module. Ex-
tending this work to include proposals iteratively against a
attention and captioning modules the way the baseline was
able to do effectively would be a more fair comparison.

Some future work could also be to exploit both the
strengths of the baseline and the NetVLAD model. We
could use NetVLAD to pool features, and baseline Atten-
tion to pool proposals and keep the same captioning mod-
ule.

In addition, because of the limited time of training for
this project, we need more time to train the whole training
set and test the whole validation sets to see see the effective-
ness of our model. Secondly, several improvement could to
be done, especially for the captioning model. For example,
bi-direction LSTM, and how to incorporate the caption gen-
eration mechanism into our training process. All of these
improvement are expected to increase the effectiveness of
our model.

035 -~ Attention_To_Past

005

000

0175

0150

Atention Level

0000

~#- Attention_To_Current
0.30 == Attention_To_Future

~@- Atention_To_Past
- Artention_To_Cusrent
= Atention To Future

035 “@- Arention_To_Past
- Attention_To_Current
030 —— pttention_To_Future
T 0.25%
U
*y 020
c
2
€ 015
G
&
% 010
005
000
025 L+ @~ Avention To_Past
+ - Attention_To_Cusrent
—w=_Attention_To_Future

Atention Level

S ¢ % 2

S)

g NO?%
o2

Figure 6: Attention analysis:A man scuba diving with air tank

%d

%
*
.

7. Contributions

The group had equal contributions from everyone in the
group. Some group members focused more on strengths
and backgrounds. Parker Miller played a significant role in
report writing and idea generation, Julio Martinez in ten-
sorflow coding, cloud and GPU setup, and Songze Li on
natural language architecture and caption generation. How-
ever, all group members contributed to the entirety of the
project.

Contributions for class are as follows:

o CS231N/CS230: Preprocessing

e CS 231N: Baseline started from no source code all in
tensorflow.

e CS 231N: Beam Search Caption Generator

e (CS230: NetVLAD and Context Gating adaption and
caption module to work with NetVLAD

e (CS230: Greedy Caption Generator
o CS231N/CS230: Performance Analysis
e CS231N/CS230: BLEU scoring function

e (CS230: Visualization Analysis

8. Code

All code in this work was written by the project members
Julio Martinez, Songze Li, and Parker Miller with three ex-
ceptions, deep action proposals (daps, which is only used
for demo purposes and not in this paper, i.e. get proposals
from a video to feed into this network to predict captions)
was available on GitHub, C3D features and correspond-
ing labels are available in json files on website for Dense-
Captioning Events in Videos, and also the NetVLAD class
was available on GitHub. daps and the NetVLAD class are
found in daps and the LOUPE directories respectively. Ev-
erything outside of these three including their mode of use
was written by project members.

References

[1] W.Q. A. F. M. P. A. Rohrbach, M. Rohrbach and B. Schiele.
Coherent multi-sentence video description with variable
level of detail. In German Conference on Pattern Recog-
nition, pages 184-195, 2014. 1

[2] M. R. A. Vahdat, B. Gao and G. Mori. A discriminative key
pose sequence model for recognizing human interactions. In
Computer Vision Workshops (ICCV Workshops), 2011 IEEE
International Converence, pages 1729-1736, 2011. 1

[3] O. Boiman and M. Irani. Detecting irregularities in images
and in video. In International Journal of Computer Vision,
pages 17-31, 2007. 1

[4] J. N. F. Caba Heilbron and B. Ghanem. Fast temporal ac-
tivity proposals for efficient detection of human actions in
untrimmed videos. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision and Patter Recogni-
tion, pages 1914-1923, 2016. 1

[5] S. L. D. W. M. G. H. Yang, B. Wang and B. Guo. Unsu-
pervised extraction of video highlights via robust recurrent
auto-encoders. In Proceedings of the IEEE Conference on
Computer Vision, pages 4633-4641, 2015. 1

[6] Z.H. Y. Y. H. Yu, J. Wang and W. Xu. Video paragraph cap-

tioning using hierarchical recurrent neural networks. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4584-4593, 2016. 1

D.Z.H.J.Zhang, J. Wu and S. Smoliar. An integrated system

for content-based video retrieval and browsing. In Pattern
Recognition, pages 643—-658, 1997. 1
[8] A. K. J. Johnson and L. Fei-Fei. Densecap: Fully convo-
lutional localization networks for dense captioning. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4565-4574, 2016. 1
[9] J. O. J. Yamato and K. Ishii. Recognizing human action
in time-sequential images using hidden markov model. In
Computer Vision and Patter Recognition, 1992. Proceedings
CVPR’92., 1992 IEEE Computer Society Conference, pages
379-385, 1992. 1
[10] C.C.].C. Niebles and L. Fei-Fei. Modeling temporal struc-
ture of decomposable motion segments for activity classifi-
cation. In European conference on computer vision, pages
392-405, 2010. 1

[11] J. Johnson, A. Karpathy, and F. Li. Densecap: Fully convo-
lutional localization networks for dense captioning. CoRR,
abs/1511.07571, 2015. 2

[12] R. Krishna, K. Hata, F. Ren, L. Fei-Fei, and J. C. Niebles.
Dense-captioning events in videos. In Proceedings of the
IEEE International Conference on Computer Vision, vol-
ume 1, page 6, 2017. 2, 3,4, 5

[13] H. G. M. Gygli and L. V. Gool. Video summarization by
learning submodular mixtures of objectives. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3090-3098, 2015. 1

[14] E.R.J.H. M. Otani, Y. Nakashima and N. Yokoya. Learning
joint representations of videos and sentences with web image
search. In European Conference on Computer Vision, pages
651-667, 2016. 1

[7

—

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

A. Miech, I. Laptev, and J. Sivic. Learnable pooling
with context gating for video classification. arXiv preprint
arXiv:1706.06905, 2017. 3

J. S. E. B. O. Duchenne, 1. Laptev and J. Ponce. Auto-
matic annotation of human actions in video. In Computer Vi-
sion, 2009 IEEE 12th International Conference, pages 1491—
1498, 2009. 1

H. Pirsiavash and D. Ramanan. Parsing videos of actions
with segmental grammars. In Proceedings of the IEEE Inter-
national Conference on Computer Vision and Patter Recog-
nition, pages 612-619, 2014. 1

W. C. R. Xu, C. Xiong and J. Corso. Jointly modeling deep
video and compositional text to bridge vision and language
in a unified framework. In AAAI, volume 5, page 6, 2015. 1

L. S. S. Karaman and A. D. Bimbo. Fast saliency based pool-
ing of fisher encoded dense trajectories. In ECCV THUMOS
Workshop, volume 1, 2014. 1

L. B.J. C.T. Mikolov, M Karafiat and S. Khudanpur. Recur-
rent neural network based language model. In Infterspeech,
volume 2, page 3, 2010. 1

T. M. T. Yao and Y. Rui. Highlight detection with pairwise
deep ranking for first-person video summarization. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 982-990, 2016. 1

J.N. V. Escorcia, E.C. Heilbron and B. Ghanem. Daps: Deep
action proposals for action understanding. In European Con-
ference on Computer Vision, pages 768-784, 2016. 1

