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Abstract

Using deep learning to perform segmentations on medical images is a fast growing
field of research. This paper explores segmenting brain tumors using two methods.
The first method uses a cascade of a WNet and a UNet and the second method uses
a Mask R-CNN framework to classify tumors in the brain. The experiments use the
BraTS 2018 dataset. Based on the results, the cascaded network seems to perform
better at segmenting brain tumors than the Mask R-CNN.

1 Introduction

Gliomas are types of tumors that occur in the brain and spinal cord. Despite recent research
on gliomas, patient diagnosis relies on images being evaluated either based on qualitative criteria
only or by relying on quantitative measures. There are two main challenges with automatic brain
segementation. First, the size, shape, and locatialization of brain tumors vary between patients, which
significantly reduces the reusability of prior information to train networks. Second, the boundaries
between parts of a tumor structure are often unclear, which leads to disagreements between medical
professionals when doing image classification.

This paper will explore two different methods of multimodal brain tumor segmentation on
the Brain Tumor Image Segmentation Benchmark (BraTS) 2018 dataset. The first method used was
Mask R-CNN, an instance segmentation framework, which identifies objects at a pixel level [2]. The
input to this framework included two datasets of images. One was the slices of the brain images,
with segmentations of the whole tumor, tumor core, and the enhanced tumor core. The second was
their corresponding masks identifying only the enhanced tumor core. The output was the segmented
image.

The second method method was implementing UNet in conjunction with the first network
(WNet) used by the model created by Wang et al., 2017 [1]. The input to this model was a MRI scan
of a whole brain with a tumor in it. We then used the WNet which outputted the bounding box of the
whole tumor. The image of the whole tumor was then fed into a UNet to output the segmented brain
tumor.

2 Related work

We began research by reading two sources provided by the BraTs competition: The Multimodal
Brain Tumor Image Segmentation Benchmark (BRATS) by Menze et al., 2014 [3] and Advancing The
Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features
by Bakas et al., 2017. [4] These provided background knowledge.

The methodology we pursued was based mainly off of four papers. Two of them discuss
the use of UNets for image segmentation: U-Net: Convolutional Networks for Biomedical Image
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Segmentation by Ronneberger et al., 2015 [5] and Radio frequency interference mitigation using deep
convolutional neural networks by Akeret et al., 2017. [6] The former was very useful for gaining
intuition about various components of the UNet architecture.

Automatic Brain Tumor Segmentation using Cascaded Anisotropic Convolutional Neural
Networks by Wang et al., 2017 [1] explains the CNN implementation that we cloned as a base for our
model. This paper included a discussion which was particularly illustrative for understanding some
advantages of using a cascade of fully convolutional neural networks given the hierarchical nature of
the tumor sub-regions that we would like to label for segmentation.

In order to learn more about the possible advantages and disadvantages of using Mask R-CNN
for image segmentation, we consulted Mask R-CNN by He et al. 2018. [2] In comparing this to
Faster R-CNN we found that Mask R-CNN is the state-of-the-art model for object detection and
segmentation.

3 Dataset and Features

The dataset was taken from the MICCAI BraTs Challenge from the University of Pennsylvania
[3], [4]. The images were split up into two categories, HGG and LGG. HGG tumors are malignant
glioblastomas and LGG tumors are lower grade gliomas. Each image was 240x240 and had 155
slices. Each patient was scanned using four different MRI modes: T1, T1lc, T2, Flair. The images
were also broken up into three different views of the brain- axial, coronal, and sagittal. The ground
truth segmentation files were manually created by clinicians. Each tumor in the segmentation files
were broken up into three subregions- the whole tumor, the tumor core, and the enhanced tumor core.
Originally we had 324,900 images in the training set and we had 39,900 in the test set. However,
due to complications with AWS, we had to train locally and therefore had to reduce the number of
examples to 10,455 images for training and 1,260 images for testing. Since we were training on
images, the features were naturally represented as multi-dimensional numpy arrays.

Figure 1: Axial view of HGG Flair image

Figure 2: Sagittal view of HGG T1c image and label

4 Methods

4.1 Mask R-CNN

Mask R-CNN is a leading object segmentation framework, which follow from Faster R-CNN,
an object detection framework. In the first stage of Mask R-CNN, images are scanned and proposals,
areas likely to contain an object, are generated. In the second stage, proposals are classified and



bounding boxes and masks are generated. The backbone of this framework is a CNN with ResNet101,
where early layers detect low level features and later layers detect higher level features. Mask R-CNN
utilizes Feature Pyramid Network (FPN) to improve upon the standard feature extraction pyramid by
introducing an additional pyramid which takes high level features and feeds them to the lower layers,
allowing all levels to have access to both higher and lower level features.

Mask R-CNN accomplishes object detection using Region Proposal Network (RPN), which
partitions the image into anchors, upon which sliding windows traverse the image and find areas
containing the object of interest. This particular framework uses a large amount of anchors which
makes training slower but more thorough. The output from the RPN are the bounding boxes. Next,
the regions of interest (ROIs) are classified and the bounding boxes are further defined. Finally, Mask
R-CNN uses the regions from the classified ROIs and generates masks for them. The masks are low
resolution and are represented by floating numbers so they can hold more detail than binary masks.

Mask R-CNN uses a multi-task loss function given by £ = L5 + Lpox + Lmask Where L5
and Ly, are the same as in Faster R-CNN [7] and L, iS given by

1 . .
Lmask = =3 > [yislogik + (1 — yij)log(1 — 4K)]
1<ij<m

In this formula, y;; is the label of a cell (3, j) in the true mask for the region of size m x m and ij is
the predicted value of the same cell in the mask learned for the ground-truth class k.

Figure 3: Mask R-CNN architecture model

4.2 WNet and UNet

UNet is a standard architecture for classifying to segment areas of an image by class. UNet
is especially gaining popularity when dealing with medical images. As seen by the model below,
we decided to combine the first network, WNet, of the model created by Wang et al.,2017 [1] and
UNet for our second brain tumor classification method. The output of the WNet was a bounding
box of the whole tumor. This was then fed in as the input of the UNet. We choose to do this instead
of feeding in the whole brain scan as the input as we hoped this would increase the accuracy of the
UNet predictions.

Figure 4: WNet and UNet Model



The first network of this model acts like a normal CNN, taking in the image of the whole brain
and outputting a bounding box for the whole tumor. As seen in the figure above, this network uses 10
residual blocks with dilated convolution, residual connections and multi scale fusion. The dilated
convolutions use batch normalization and PReLu. This reduces the impact of the earlier layers within
the network and also helps with regularization. The Residual connections help smooth propagation.
The multi-scale fusion allows us to represent both low level and high level features.

The second network of our model is the UNet. The whole network has 23 layers. The first half
of the UNet is a contracting, downsampling path, meaning it acts like a regular CNN. However, the
second half of the network is an expansive, upsampling path. Both halves use convolutions and ReLu.
The first half also has max pooling and the second half has up-convolutions. Having a network such
as this allows us to capture the context of the image while simultaneously allowing the localization to
be more precise.

For both of these networks, a softmax with a cross entropy loss was used:

i (@)
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During training for both networks, the Adaptive Moment Estimation (Adam) optimizer was used.

5 Experiments/Results/Discussion

In order to use the 3D images given in the form of .nii files for the Mask R-CNN, they had to be
converted to .png files. To work with the framework, each image frame had to have an accompanying
binary mask segmenting the enhanced tumor core in a COCO-style annotation. This was done based
on the ground truth segmentation images the dataset provides.

&

Figure 5: Binary mask segmenting the enhanced tumor core

The Mask R-CNN paper uses a learning rate of 0.02 but since this causes the weights to
explode on TensorFlow, a learning rate of 0.001 and a learning momentum of 0.9 was used in our
implementation. For Mask R-CNN, the images had to be resized to 256 by 256 to work with the code
and to ensure precision and granularity, 256 anchors per image were used for RPN training. Batch
size is calculated as the product of the number of GPU’s used and images per GPU. Since we were
not able to train using GPU, the batch size was 1.

Due to computation power limitations, we had to use transfer learning. Instead of training
the model from scratch, we started training with a weights file from the trained Microsoft COCO
(Common Objects in Context) dataset. Since this dataset has pretty general image classifications,
such as animals and cars, training the model using these weights on much more specific images of
brain tumors did not translate well. Therefore, the accuracy was very low for image segmentation
using Mask R-CNN.
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Figure 6: Loss value on validation data shows overall decrease in loss

For the UNet, 1 was passed in as the number of channels because we were using gray scale
and 2 was used as the number of of classes since we were predicting the enhanced tumor core versus
no enhanced tumor core. The learning rate used was 0.2 and the batch size was 1. For this method
we did not perform any hyperparameter tuning because the model we built off of already had tuned
hyperparameters. The metric that was used for this model was accuracy. Below was the training
accuracies for the three different views:

View Training Accuracy

Axial 88.117
Coronal 86.627
Sagittal 97.317

Table 1: Training Accuracy

Since we only able to train on a smaller subset of the data due to issues with using a GPU, we overfit
to our training set. If we had been able to run the whole training set, we would have been able to
mitigate the overfitting issue. Also, due to computational power limitations, we had to cut the test set
and therefore only tested on the saggital view. We chose this view because the output seemed to be
the most interpretable. The test set error for this was 47.57 percent. Below is the output we get from
running the UNet.

Figure 7: Input vs. segmented pixel values during testing

6 Conclusion/Future Work

Overall, we found that the cascaded WNet to UNet model performed better in segmenting
brain tumors than the Mask R-CNN. We imagine that incorporating UNet into the model is beneficial
for a learning task like ours because the combination of symmetric contracting and expanding paths
allow it to localize and make use of context at the same time. In the future, we would use pre-existing
medical segmentation weights instead of COCO weights as the COCO dataset is trained on images
of everyday objects such as cars and people, so using these weights for classifying an object as
specific as a brain tumor did not yield good results. We would also try ResNet50 as the backbone of
RCNN instead of ResNet101 as a first step in limiting variance of the model. We would also consider
implementing UNet for the whole model and not just one network as part of the Wnet-to-Unet cascade
to try a fully end-to-end network. Lastly, pre-trained models for segmentation during pre-processing
could be used instead of using the ground truth to limit over-fitting.



7 Contributions

Basak worked on the Mask RCNN model while Earley and Reji worked on adapting imple-
mentations of WNet and UNet to the project.
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