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Abstract

This paper discusses the application of a Deep Learning algorithm that can segment post-stroke lesion
based on a series MRI slices and their corresponding lesion masks. The algorithm has been trained using
ATLAS (Anatomical Tracings of Lesions After Stroke), an open source dataset of 304 T1-weighted MRIs
and 229 manually segmented lesions. The project tested whether using a Residual Neural Network Model
with 20 units (using two convolutions each) can improve the accuracy (defined as the DICE coefficient)
versus the provided 8-layer Convolutional Neural Network. We find that using the Residual Neural
Network provides similar losses, however a weaker DICE coefficient. As future work we recommend
adjusting the hyperparameters of the model for further optimization.

1. Introduction

Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals
experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying
robust biomarkers (e.g., measures of brain structure) of stroke recovery. However, analyzing large
datasets is problematic due to barriers in accurate stroke lesion segmentation. Manually traced lesions are
currently the gold standard for lesion segmentation, but are labor intensive and require anatomical
expertise. While algorithms have been developed to automate this process, the results often lack accuracy.
Newer algorithms that employ machine-learning techniques are promising, yet these require large training
datasets to optimize performance. In this paper, we present an Al algorithm aiming to automate the
process of segmenting post-stroke lesions. Specifically, using publicly available MRI images of stroke
patients to train deep learning models, trying different neural network structures and various
hyperparameters.

2. Previous work

The traditional gold standard for identifying stroke lesions is manual tracing, however, this is labor
intensive and requires anatomical expertise, making it impractical to analyze large dataset. Many
computer based algorithm have been proposed as well. For example, Jhimli or Mitraa tried to use random
forest following ischemic stroke to improve segmentation effect. However, many of these algorithms still
suffer from a low accuracy rate. In recent times, machine learning has been identified as a potential
solution to this very challenging problem. However, till date there have been no available training datasets
to build reliable algorithms in this domain. The release of the ATLAS 1.1 (Anatomical Tracings of
Lesions After Stroke) dataset to the public a few months ago presented a new opportunity for deep
learning application.



3. Dataset

In this paper, we utilized the newly released dataset: ATLAS. It is an open-source dataset of 304
T1-weighted MRIs with manually segmented lesions and metadata. This large, diverse dataset can be
used to train and test lesion segmentation algorithms and provides a standardized dataset for comparing
the performance of different segmentation methods.

The 304 MRI images from 11 cohorts worldwide were collected from research groups in the ENIGMA
Stroke Recovery Working Group consortium. For each MRI, brain lesions were identified and masks
were manually drawn on each individual brain in native space using MRIcron, an open-source tool for
brain imaging visualization and defining volumes of interest. A minimum of one lesion mask was
identified for each individual MRI. If additional, separate (non-contiguous) lesions were identified, they
were traced as separate masks. An expert neuroradiologist reviewed all lesions to provide additional
qualitative descriptions of the type of stroke, primary lesion location, vascular territory, and intensity of
white matter disease. Finally, a separate tracer performed quality control on each lesion mask.

4. Baseline Model

A baseline Convolutional Neural Network with 8 layers has been provided in the beginning to serve as a
foundation for further improvement. The image input size is [232,196,1].

The structure of this network (encoder) is shown in Figure 1. The model uses as loss a sigmoid cross
entropy function and an Adam optimizer.
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Figure 1: Structure of the baseline Convolutional Neural Network Encoder

e Convl: Convolves the input with 64 filters of size [3,3,1], with same padding and a stride of
[1,1,1]. The weights are initialized with a Xavier initializer. The output dimensions are
[232,196,64]. The output then goes through a ReLU activation. Finally, a dropout regularization
1s applied to the activations.

e Conv2: Convolves the input with 64 filters of size [3,3,64], with same padding and a stride of
[1,1,1]. The weights are initialized with a Xavier initializer. The output dimensions are
[232,196,64]. The output then goes through a ReLU activation. Finally, a dropout regularization
is applied to the activations.

e Maxpool 1: Performs Maxpooling on the input, with shape [2,2,1] and stride [2,2,1]. The .output
dimensions are [116,98,64].

e Conv3: Convolves the input with 128 filters of size [3,3,64], with same padding and a stride of
[1,1,1]. The weights are initialized with a Xavier initializer. The output dimensions are



[116,98,128]. The output then goes through a ReLU activation. Finally, a dropout regularization
1s applied to the activations.

e Conv4: Convolves the input with 128 filters of size [3,3,64], with same padding and a stride of
[1,1,1]. The weights are initialized with a Xavier initializer. The output dimensions are
[116,98,128]. The output then goes through a ReLLU activation. Finally, a dropout regularization
is applied to the activations.

e Maxpool 2: Performs Maxpooling on the input, with shape [2,2,1] and stride [2,2,1]. The .output
dimensions are [58,49,128].

e Conv5: Convolves the input with 256 filters of size [3,3,128], with same padding and a stride of
[1,1,1]. The weights are initialized with a Xavier initializer. The output dimensions are
[58,49,256]. The output then goes through a ReLU activation. Finally, a dropout regularization is
applied to the activations.

e Conv6: Convolves the input with 256 filters of size [3,3,256], with same padding and a stride of
[1,1,1]. The weights are initialized with a Xavier initializer. The output dimensions are
[58,49,256]. The output then goes through a ReLU activation. Finally, a dropout regularization is
applied to the activations.

4.1 Other Hyperparameters
Besides the structure of the Neural Network described on the previous section, other relevant
hyperparameters of the model are:

e Learning rate =(0.001

e Proportion of units randomly dropped in dropout regularization =0.15

e Mini-batch size = 100

5. Methods

5.1 Residual Neural Networks

The most salient feature of Residual Neural Networks is their depth. Their architecture enables the
training of much deeper networks, avoiding the problem of exploding or vanishing gradients. The main
innovation is that in these networks the input of a lower layer is made available to a neuron in a higher
layer.

These networks currently have a state-of-the-art performance for multiple deep learning use cases, such as
image recognition, object detection and semantic segmentation.



5.2 Replacing the encoder
A pre-built Residual Neural Network was adapted for this project'. The baseline encoder was replaced
with a new network, the structure of which is explained below.
1. Initial convolution
2. 20 units that have the same structure. Differences only occur for the size of the filters. The
structure of each unit is shown in Figure 2 and explained below:
a. Initiates with a Leaky ReLU activation
b. Normalizes (batch-normalization) and performs a convolution
¢. Normalizes (batch-normalization) and performs a second convolution
d. Adds the output with the activations of the first Leaky ReL.U (step a.)
3. Leaky ReLU activation
4. Final fully connected layer with 64 neurons
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Figure : Structure of the Residual Neural Network used to encode the image

5.3 Hyperparameter tuning

The model tested various learning rates to determine its impact on the model accuracy. The set of tested
learning rates each varied by one magnitude. We found that adjusting the rate from o = 0.001 (as in the
baseline) to a = 0.0001 optimized the loss function and DICE coefficient of the model.

A further adjustment needed to be made on the mini-batch size. While the Convolutional Neural Network
was operating on a mini-batch size of 100, this proved to be excessively resource-consuming for the
purpose of our model. Adjusting the mini-batch size to 50 greatly improved the model performance.
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https://github.com/tensorflow/models/tree/master/research/resnet



6. Results
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7. Conclusion / Future Work

We conclude that using the depth of the Residual Neural Network Model did not improve the accuracy as
compared to the 8-layer Convolutional Neural Network. While the loss function yielded similar results,
the RNN was unable to achieve a DICE coefficient that could match the Convolutional Neural Network’s
accuracy.

We expect that tuning the hyperparameters (e.g. number of hidden layers, numbers of neurons in final
fully connected layer of encoder) could be a helpful lever to improve the model’s accuracy.
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