Instance Segmentation using Depth and Mask RCNNs

Mohamed Masoud

masoud@stanford.edu

Rewa Sood

rrsood@stanford.edu

June 9, 2018

1 Abstract

There are currently many models that produce accurate
instance segmentation results using RGB images. How-
ever, few models incorporate depth information. These
models used different methods and architectures to incor-
porate the estimated or measured depth for object detec-
tion, semantic segmentation and instance segmentation.
This project analyzes whether adding measured depth
in addition to RGB information improves instance seg-
mentation results and how well transfer learning works
with a very small dataset. For that purpose, we modi-
fied the Mask RCNN network to include features from
depth images in the object detection pipeline. Despite the
marginally better results of the proposed RGB-D model
over the RGB-only model, it is difficult to make a defini-
tive conclusion as to whether the depth information sig-
nificantly helps instance segmentation due to the small
dataset size. However, transfer learning produces more
accurate results, implying that a larger dataset could im-
prove the results further.

2 Introduction

Instance segmentation is an important part of applica-
tions such as automated driving. The last few years has
seen rapid development of fast scene understanding al-
gorithms. However, many algorithms do scene under-
standing tasks on 2D data sets. Recently, Facebook Al
Research (FAIR) has released code for a Mask R-CNN
backbone which is state-of-the-art for 2D scene under-
standing tasks like instance segmentation. In this project,
we investigate whether incorporating the depth features
would further enhance the object detection component
of the instance segmentation and accordingly would im-
prove the Mask R-CNN overall performance. We com-

pare the RGB-D Mask RCNN model to a baseline of RGB
only model and a transfer learning model that fine tunes
a pretrained Mask RCNN model [4] on the large COCO
dataset [2] with the small NYU dataset RGB images [1].
The input to our method is the annotated NYU dataset
for both transfer learning and the RGB-D model. The
outputs are bounding boxes, instance masks, and class
membership information. Improving instance segmenta-
tion would help applications such as automated driving
become even safer than they already are because these ap-
plications would be able to differentiate between drivable
road and other objects more effectively.

3 Related Work

There are some scene understanding studies using
RGB-D images focused on object detection and semantic
segmentation. [8] introduced a method to infer the overall
3D structure of the image scene and then parse its ob-
ject for detection and instance segmentation. This study
used the same NYU RGBD dataset. Furthermore, in [9],
the authors constructed a large 3D RGB-D dataset with
detailed annotations for scene understanding. [10], de-
signed a generalized modified architecture of RCNN and
a three channel representation of the depth images for ob-
ject detection and segmentation. [11] uses fully convo-
lutional networks for semantic segmentation. [3], intro-
duced a method to estimate depth from the RGB image.
The RGB-D is then used to train a modified Fast R-CNN
for object detection [5]. Our work is guided by [3] to
modify Mask R-CNN architecture for our study of RGB-
D instance segmentation.

4 Dataset

We are using the dataset from NYU [1]. The NYU
dataset contains 1449 densely labeled pairs of aligned



Kinect depth and RGB images. The dataset was split
into 80/10/10 train/validation/test sets. The original im-
age dimensions were rescaled to 256x256x3 to speed up
runtime. Since we are doing transfer learning using the
COCO dataset with the same architecture, we only use
the masks that match the COCO dataset classes. The
NYU dataset provides labels for 895 object classes while
the COCO dataset has only 80 classes. We created class
mappings that would capture low level features for the
corresponding classes. The other significant part of the
dataset are the instance maps and labels associated with
these aligned images. The dataset provides an efficient
way to extract the following triplet: the RGB image, the
gray scale depth image and pixel level labels/masks from
one data file 1. The easy extraction of this triplet made
the dataset a great candidate with which to train the Mask
RCNN, since all the masks are readily available. How-
ever, the size of the labeled dataset imposed a major chal-
lenge to the study. The small amount of data made overfit-
ting inevitable, even for the transfer learning experiment.
Additionally, the NYU dataset is labeled such that there is
one bounding box per type of object, regardless of the rel-
ative locations of the objects. for example, in Figure 1, all
four pictures have the same bounding box. The main issue
with this labeling method is that some of the background
features are also included with the pertinent features. This
mixing of features confuses the network as to which com-
ponents actually belong to the object. Additionally, this
labeling scheme is vastly different from that used in the
COCO dataset. This difference makes it difficult for the
network to learn during transfer learning.

5 Methods

This dataset provides a unique approach to exploring
the RGB-D plus Mask RCNN problem. The NYU dataset
encodes depth in a 2D image that mirrors its associ-
ated RGB image. We are proposing an architecture that
trains one Mask R-CNN pipeline: a concatenation of the
RGB and depth image features. The approach we took
involved instance level feature concatenation, where for
each instance, a fixed-length feature vector was extracted
by the fully convolution network layer and the depth and
RGB feature vectors were concatenated. We only trained
one RGB RPN and used it for both the RGB and depth
pipelines. The architecture used in this study is a modifi-

Figure 1: This figure shows an example of the NYU data: RGB,
Depth, and Ground Truth labels

cation of the FAIR’s Mask R-CNN 2.

The RGB image backbone and RPN pipeline is a com-
plete Mask-RCNN pipeline that takes the single scale of
the entire RGB image through the Faster-RCNN ResNet-
50 with Feature Pyramid Network (FPN) backbone lay-
ers [7]. The extracted RGB image convolution feature
map output of the backbone layers is then fed into the
Region Proposal Network (RPN) model. The RPN gener-
ates the bounding box proposals and then detection target
layers subsample these proposals through non-max sup-
pression and generate masks for each Region of Interest
(Rol) proposal. The depth image pipeline is similar to the
RGB pipeline, where the depth image pipeline takes an
RGB representation of the gray scale depth image into
a separate ResNet-FPN backbone. For each ROI gen-
erated by the RGB network RPN model, both extracted
RGB and depth convolution feature maps pass separately
through the FPN feature pyramid, ROIAlign pooling, and
two fully connected (FC) convolution layers. The sepa-
rate RGB and depth output encodings are then squeezed
and concatenated to form the class logits for the softmax
classifier output layer and to feed the bounding box re-
gression output layer. The FPN, ROIAlign pooling, FC
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Figure 2: RGB-D model

layers, and concatenation form the network head, which
is the only part trained during transfer learning.

It is important to note that the concatenation of the en-
coded RGB and depth features is performed on the ROI
level. Conceivably, the ROI proposals derived from the
depth images could be different from the proposals de-
rived from the RGB images because the two types of im-
ages contain different information. Therefore, in order to
avoid matching the ROI proposals between the RGB and
the depth images, we use only the RGB ROI proposals for
both the pipelines. Additionally, since the RGB and depth
features describe the same image, it is reasonable to use
RGB bounding box proposals for the depth features as
well.

Another important note is that the depth mask branch is
omitted. The reason is that we are focusing our study on
the object detection part of the instance segmentation and
the boundaries of objects are fuzzy in depth masks.

6 Experiments and Results

We compared three different models: the Mask-RCNN
architecture using only RGB images, the modified archi-
tecture using RGB and depth images, and transfer learn-
ing, where the network heads were fine tuned, using a
pretrained COCO dataset model. For the first two mod-
els, we train the entire network with the small NYU train-
ing dataset. Additionally, the images were first resized
to 256x256 from their original size to help decrease the
amount of time required for the network to train and to
make sure the images were square for all models. Each
model was trained using Resnet-50 instead of Resnet-101

so that there were fewer layers to train. The results from
each of these models with no hypertuning are shown in
Figure 3. The network was trained for 20 epochs with a
batch size of 2 and a learning rate of 0.01.

We studied three hyperparameters for tuning: learn-
ing rate, regularization strength, and data augmentation.
The learning rate was originally set at 0.01. Keeping the
rest of the parameters the same, we changed this rate to
0.001. Looking at the loss curves from the runs that used
the original learning rate, we noticed that the loss initially
drops significantly and subsequently plateaus out 4. Thus,
we tried lower learning rate of 0.001 in pursuit of bet-
ter convergence. Again, keeping all other parameters the
same, we modified the regularization strength by increas-
ing the weight decay from le-4 to 1e-3. We chose to in-
crease the regularization to try to help the network overfit
less. For data augmentation, we randomly flipped the im-
age over the vertical axis with a probability of 50%. Reg-
ularization and data augmentation produced loss curves
similar to those in 4.

The loss curves show that for both the training and val-
idation losses and the bounding box and class losses, the
RGB-D network achieves a marginally lower loss over-
all compared to the RGB model. In addition, the mAP
scores for each hyperparameter experiment in Table 1 in-
dicate that the RGB-D network produces similar, if not
better, results to the RGB network. One possible expla-
nation for the plateauing of the loss curves after epoch 2
is that there are not enough examples in the NYU dataset
to define the multidimensional problem space. Based on
Table 1, none of the hyperparameter changes improved



(c) RGB results

(d) RGB-D results

Figure 3: Ground Truth vs transfer learning, RGB, and Depth Results

Original | Augment | Weight Decay | Learning Rate
RGB (%) 12.22 6.02 10.85 6.7
RGB-D (%) | 20.63 6.67 10.23 7.52
Transfer (%) | 36.19 323 36.75 36.49

Table 1: mAP Results for various experiments

the RGB and RGB-D models, however there seems to be
some improvement in the transfer learning mAP scores
for changes in weight decay and learning rate. One pos-
sible explanation for the reduction in performance for the
RGB and RGB-D models is that there was not enough
data to learn originally, therefore, the lower learning
achieved slower but not better convergence. The L2 reg-
ularization did not help with the generalization problem;
it may have caused the model to learn less from the al-
ready small dataset: a high bias and high variance prob-
lem. Interestingly, data augmentation produced the worst
results by far. This outcome might be due to the fact that
the NYU bounding boxes mark all instances of an object

as one object. So, the original bounding box and objects
versus the flipped version might produce very different
features.

Looking at the different model results for a specific im-
age from the test set provides some insights into how each
model has been trained. Exploiting the COCO dataset
pretrained features, the transfer learning model detects
most of the objects in the image, even the unlabeled ob-
jects such as the object incorrectly labeled ’bottle’ in 3b.
This fine tuned model also finds each separate object: pic-
tures and each separate couch. It misclassified certain ob-
jects and gets a bit confused due to the NYU data label-
ing: many pictures with high scores are detected on the
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Figure 4: Losses for RGB(red), RGB-D(Light blue), and Transfer learning(Dark blue)

top part of the image.

Comparatively, the RGB and RGB-D models perform
less accurately. Both models’ detections are moderately
similar. However, there are some interesting distinctions.
The RGB-D detections have higher accuracy and class
scores in couch/chairs area where the depth features are
more prominent. In contrast, the pictures area is lacking
depth features and therefore the depth encoding does not
contribute to the detection of pictures in this area.

7 Conclusion and Future Work

In our study, we modified the Mask-RCNN architecture
to incorporate the Kinect depth measurements with the
object detection part of Mask-RCNN instance segmenta-
tion. We compared the performance against a baseline of
RGB-only model and a more accurate transfer learning
model that fine tunes a pretrained COCO dataset using
the same NYU data RGB images. The NYU depth V2

dataset is being used for this study. The annotated part
of the NYU dataset is a small set of 1449 triplets [RGB,
depth, and Mask images]. The results show a marginal
enhancement of performance incorporating the depth fea-
tures over the corresponding RGB-Only model.

The future work on the proposed model should ad-
dress the challenges of the present study. Despite the
readiness of extracting the masks, the NYU dataset in-
troduces major challenges due to its small labeled data
size and the flaws of the objects bounding box labeling.
Princeton SUN RGB-D 9 dataset could be considered as
a viable alternative. The future study would also benefit
from more computational power and resources, as the pro-
posed model and deep models like Mask-RCNN require
a big computational budget. Addressing these challenges
would greatly improve the scope and the results of the
study.
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