Predicting the distribution of car demand CS230-Spring 2018

HyoungJu SEO
Department of Aeronautics & Astronautics
Stanford University
hjseo@stanford.edu

Abstract

This paper aims predicting car demands in New York city from weather, date and historical car
demand data. I experimented with various parameters (Time sequential model length, Input features,
Time step, Categorization, Depth and attention layer) of LSTM to maximize the accuracy of car
demand. From these experiments, I predicted car demand with 3.49% error.

1 Introduction

Mobility-on-Demand services(e.g. carsharing and ridesharing) have expanded numerously in several years. On top
of that, rapid autonomous vehicle technique development has significantly influence on new paradigms for future
urban mobility systems. One of these paradigms is coordinating a fleet of self-driving vehicles which serve customers
with on-demand transportation service, also called autonomous mobility-on-demand (AMoD). An AMoD system may
replace service with positive effects of safety, parking infrastructure, and congestion.[6] One of the most challenging
problem of AMoD systems is being out of balance by asymmetric demand : If some areas are more popular than others,
vehicles will stack on those regions limiting the availability of other areas.[3] Furthermore, reducing congestion on
the road with AMoD systems is crucial problem.[6] There are various methods for optimizing control of an AMoD
system with rebalance and congestion strategy (e.g., using a fluidic model, a queueing network model or a road
network model)[6][3][5]. Previous work mostly concentrated on the control of routes, schedules and the number of the
autonomous vehicles on the road using steady-state values, not the time varying values like distribution of car demand.
However, in the previous work we couldn’t efficiently solve a key challenge of the AMoD system with asymmetric
demand because those strategies are reactive : they do not rebalance the cars in the real time under rapidly varying
traffic phenomena.[1] Thus, if we knew information about future car demand, autonomous vehicles could be efficiently
allocated to meet demand over time and minimize customer wait times by rescheduling . To coordinate the system more
effectively, the prediction of car demand is needed. Accordingly, I will predict the number of car demand at certain time
from time series data of weather, date, and car demand using a Long short-term Memory(LSTM) model, while finding
optimal LSTM model for forecast car demand.

2 Related work

As forecasting car demand has positive effects on not only Mobility-on-Demand platform but also future urban
transportation system, AMoD system, there is an increasingly gained attention in predicting transportation demand.
Recently, as deep learning architecture developed significantly, forecast with deep learning architecture is popular. [2]
used a LSTM model to predict Uber demands especially at special holidays. [4] utilized deep learning architecture, RNN
and LSTM and deep LSTM, to predict human mobility and transportation pattern (e.g. future movements, transportation
choice, and destination) from GPS record and transportation mode. Because [2] more concentrated on special holidays
and [4] more dedicated to mobility and transportation pattern, the research to find the most efficient input and model
structure for prediction is not done and is needed. In this paper I will experiment with various parameters that can affect
forecasting accuracy in LSTM and will find optimal one.
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3 Dataset and Features

As we can easily think that the number of daytime cars demanded, weather, and holiday have an impact on evening car
demand, forecasting car demand model should be trained with historical data and diverse features relevant to the model.
In this project, I used the database which includes Yellow and Green Taxi Pickup data in New York City from 2014 to
2017, found in NYC Taxi & Limousine Commission (TLC), http://www.nyc.gov/html/tlc/html/about/
trip_record_data.shtml. Data from 2014 to 2016 is used for training and data from 2017 is used for evaluation.
For the model’s input, I analyzed car demand history, day information(holiday, day, time), and weather of NYC
(temperature, precipitation, and weather description). Here is an example of the dataset.

Table 1: Example of data

pick up time Temp Windspeed Precipitation Clear Clouds Fog Rain Snow Thunderstorm Holiday Hour Day pick up num
2014 — 01 —-0101:00 268.90 2.0 1 0 0 0 0 0 0.0 1 2 1 33482
2014 — 01 —0102:00 268.48 3.0 1 0 0 0 0 0 0.0 2 2 1 36280
2014 — 01 —0103:00 268.33 3.0 1 0 0 0 0 0 0.0 3 2 1 33154
2014 — 01 —-0104:00 268.10 3.0 1 0 0 0 0 0 0.0 4 2 1 28520
2014 — 01 —0105:00 268.02 1.0 1 0 0 0 0 0 0.0 5 2 1 20703
4 Methods

In this project, I predict the car demand distribution from time series data. To catch time-series characteristics, Recurrent
Neural Network (RNN) is effective because it could memorize previous data, except a long-term memory. Long
Short-Term Memory (LSTM) neural network overcomes the disadvantage of RNN. LSTM makes it possible to learn
the long time-series by determining the optimal time lags for prediction.

A LSTM model has units composed of a memory cell, an input gate, an output gate and a forget gate. It computes a
relation from an input sequence X = (x1,...,z7) to an output sequence Y = (y1,. .., yr) with following equations.
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where 4, f and o are the input gate, forget gate and output gate respectively. ¢ and m are the activation vectors for each
cell and memory block, and the weigh matrices W and bias vectors b are building a connection between the input layer,
output layer and memory block. Also, ©® means the scalar product of two vectors, o(-) represents the sigmoid function,

and g(-), h(-) and ¢(-) are the input, cell output and network output activation function. LSTM units architecture is
following Figure 1.
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Figure 1: LSTM unit



However, LSTM model has a problem with connecting relevant inputs and outputs. An attention model is a method that
takes n arguments ¥, . . ., Y, and a context c. It returns a vector representing summary of arguments : relevance of
each argument and given context. The attention model’s architecture is above Figure 2 and following equations.

m; = t(l’l’Lh(WcmC + Wymyl)

softmax(ml,...,my,) = (

5 Experiments/Results/Discussion

I predicted the total number of cars demanded over time in New York City with various parameters. This approach
is able to figure out the appropriate LSTM model for predicting car demand. I experimented with respect to input
condition, time sequential model length (the number of LSTM hidden layers), data categorization (depending on day and
time), time step and structure of LSTM (the depth of LSTM and attention layer). Following Figure 3 is the architecture
of my experiments.

| LSTM Unit [ LSTM Unit |{ LSTMUnit |- « e e - LSTM Unit

| Attentign Layer l Depth

Time Step

ILSTMU:'\itHLSTMUnitHLSTMUnit}»O o o {LSTM Unit |

T
Time Sequential Length

| Input H Input H Input | Input

Input condition & Data Categorization

Figure 3: Architecture

The source code for the prediction is available at https://github.com/Hyoungju/CS230-Final-project-predicting-taxi-
demand

5.1 Time sequential model length & Input

I experimented with different time sequential model lengths (the number of LSTM hidden layers) : 12 hours, 24 hours,
48 hours, with different input features : all weather information and only precipitation among weather information.
Except that, the other parameters are set as 1 depth of LSTM, 1 hour unit time step, without categorization, 100 epochs,
and 100 batch size(26280 train set, 6469 test set).

Table 2: Error result of with different input and time sequential length

Result with all weather data Result with only precipitation
error 12 hours 24 hours 48 hours | 12 hours 24 hours 48 hours
R2(y & 9) 0.97 0.97 0.97 0.97 0.97 0.97
mean absolute error(MAE) 880.87 773.33 851.58 853.98 784.15 756.61
root mean squared error 1199.40 1063.94 1198.17 1161.25 1110.63 1093.09
M AE percentage test set(%) 9.47 7.79 8.37 8.94 7.25 6.80
M AE percentage train set(%) 9.77 6.38 6.74 7.09 6.43 6.25

From the Table 2 results, I figured out that 48 hours time sequential length using only precipitation is the most reasonable
with respect to all error analysis. These results suggests that 12 hours and 24 hours are short for LSTM hidden layer
numbers causing high bias and variance. When comparing effects of including all weather information and using only
precipitation, all weather information like temperature, wind speed, and weather description do not have positive effect



on predicting car demand. It shows that weather information is less correlated with future car demand, so it could cause
deviation in prediction and overfit to uncorrelated data.
Thus, I will only use precipitation data among weather information and 48 hours time sequential length.

5.2 Time step

I experimented with different time step : 1 hours, 20 minutes, 10 minutes, 5 minutes. The number of dataset changes
depending on the time step. Thus, I use only 26280 train set, 6469 test set to compare effect of time step excluding
effect of dataset size. Except that, the other parameters are set as 1 depth of LSTM, 48 time sequential model length,
without categorization, 100 epochs, and 100 batch size.

Table 3: Error result of different time step

error 1 hours 20 minutes | 10 minutes 5 minutes
R2(y & 9) 0.97 0.99 0.99 0.99
mean absolute error 756.61 189.76 96.97 45.96
root mean squared error 1093.09 261.60 136.46 60.79
mean absolute error percentage test set(%) 6.80 5.53 4.98 5.41
mean absolute error percentage train set(%) 6.25 4.96 4.56 4.75

As seen in Table3, 10 minutes time step shows the most accurate prediction with respect to bias and variance. These
results demonstrate that predicting car demand using previous 480 minutes is the most effective : more than 480 minutes
can cause overfit to useless data and less than 480 minutes can cause missing crucial data for prediction. The prediction
result using all possible data set (157680 train set, 39355 test set) with 10 minutes time step is in the Table 4.

Table 4: Error result of 10 minutes

R2(y& y) MAE RMSE MAEF percentage test set(%) MAE percentage train set(%)
error 0.99 71.19 98.94 3.82 3.74

5.3 Categorized data

We can assume that depending on the day and time, future car demand might have different correlation with previous
demand. I experimented with different categorized data : sorting by forecast day (from Sunday to Saturday) and forecast
time (from 00:00 to 23:00). The other parameters are set as 1 depth of LSTM, 1 minute unit time step(to get enough
amount of dataset for excluding effect of dataset size), and 48 time sequential model length, 100 epochs, 100 batch size.

5.3.1 Day

T use 225257 train set, 55543 test set. And here is the error result when categorized by day and without categorization.

Table 5: Error result categorized by day and without categorization

error Monday Tuesday Wednesday Thursday Friday Saturday Sunday | without
R2(y & §) 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.98
mean absolute error( M AE) 12.31 12.34 12.40 12.33 12.32 13.03 12.57 13.62
root mean squared error 16.10 16.13 16.24 16.21 16.19 16.98 16.45 17.69
M AE percentage test set(%) 7.73 7.63 7.53 7.43 7.36 8.10 7.60 7.39
M AE percentage train set(%) 6.77 6.53 6.57 6.64 6.63 6.55 6.43 6.57
5.3.2 Time

I use 65700 train set, 16393 test set. And here is the error result when categorized by time and without categorization.

From the results Table 5, I figured out that categorizing data with respect to day does not improve the prediction
accuracy. However as seen in Table 6 and 7, when the data is categorized with respect to time, the prediction accuracy
enhanced for all times. Thus, we can conclude that car demand has different correlation with previous historical
demands depending on the time not the day. (e.g. car demand at 4:00 PM is significantly influenced by 9:00 AM car
demands. However, car demand at 4:00 AM is rarely affected by 9:00 PM car demands.)



Table 6: Error result categorized by time

error 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00
R2(y & 9) 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
mean absolute error( M AE) 12.20 12.17 12.16 12.13 12.22 12.17 12.12 12.17 12.20 12.12 12.19 12.19
root mean squared error 15.95 16.04 15.92 15.82 16.03 15.89 15.88 15.98 15.93 15.90 15.90 16.03
M AE percentage test set(%) 6.88 6.83 6.81 6.83 6.93 6.83 6.83 6.87 6.93 6.82 6.79 6.86
M AE percentage train set(%) 5.62 5.58 5.59 5.59 5.64 5.56 5.56 5.60 5.62 5.58 5.62 5.59

error 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

R2(y & 9) 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

mean absolute error( M AE) 12.23 12.13 12.19 12.18 12.19 12.14 12.15 12.21 12.19 12.19 12.14 12.18
root mean squared error 15.98 15.80 15.89 16.01 16.01 15.95 15.95 16.03 16.01 16.02 15.83 15.88

M AE percentage test set(%) 6.84 6.84 6.81 6.82 6.88 6.87 6.81 6.84 6.86 6.82 6.83 6.83
M AE percentage train set(%)  5.58 5.58 5.60 5.58 5.59 5.58 5.59 5.59 5.57 5.57 5.56 5.57

Table 7: Error result without time categorization

R2(y& y) MAE RMSE MAEF percentage test set(%) M AE percentage train set(%)
error 0.98 13.31 17.28 8.24 6.86

However, when categorizing with respect to time, the data size will decrease remarkably. In the prediction using
LSTM, data size is the most crucial for prediction accuracy. Even though categorization with respect to time enhance
prediction, I do not have enough data of 10 minutes time step when categorized with respect to time. I would not use

time categorization in future experiments.

5.4 Depth of LSTM & Attention Layer

Definitely, car demand is influenced by differently weighted historical data (e.g. car demand at 4:00 PM is affected
higher by car demand at 8:00 AM and 3:00 PM than by car demand at 11:00 AM and 1:00PM). Thus, we can predict
that the more complex LSTM structure can enhance the prediction of car demand. I experimented with Depth of LSTM
: 1 depth, 2 depth, 3 depth. Also I experiment with an attention layer which consider relevance between arguments
: architecture with an attention layer is that inputs go through a LSTM layer, a attention model and another LSTM
layer sequentially. Except that, the other parameters are set as 10 minutes, 48 time sequential model length, without
categorization, 100 epochs, and 100 batch size.

Table 8: Error result of different depth of LSTM

error Attention layer 1depth 2 depth = 3 dept

R2(y & 9) 0.99 0.99 0.99 0.99

mean absolute error 73.35 71.19 69.29 67.77

root mean squared error 102.75 98.94 97.57 95.81

mean absolute error percentage test set(%) 3.82 3.82 3.61 3.49
mean absolute error percentage train set(%) 3.70 3.74 3.66 3.61

From the results in Table &, I found out that an attention model is not effective in predicting car demand. I could assume
that predicting car demand does not require remembering early data in long sequences, which is the benefits of an
attention model. However, we can easily see that stacked LSTM structure, utilizing sequences of LSTM output as input
of next LSTM, can enhance the accuracy of prediction. Thus I can infer that stacked LSTM can make more effectively

different weights on each time history.

6 Conclusion/Future Work

In this paper, I presented LSTM models which predict car demands in New York City. I experimented with various
parameters (Time sequential model length, Input features, Time step, Categorization and Depth) of LSTM. And I tested
an attention model for more accurate prediction. From these experiments, I figured out that 48 time sequential length,
only precipitation weather data, 10 minutes time step, categorization with time and 3 depth of LSTM are the optimal
data and architecture structure for car demand forecast.

This paper opens several new approach of research. First, it is of interest to predict car demand with other influential
information (e.g. events, news). Second, I would like to develop algorithms which predict more specific information of
car demand (e.g. customers requests area information and destination information).
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