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Abstract

How does the language you speak impact the way you see the world? We explore this
question in computers -- how does jointly training on linguistic and image data impact latent
representations in a neural model? We train a multimodal variational autoencoder on a color
reference game dataset, learning a joint distribution over colors and color descriptions. We
show that the model can successfully learn a joint distribution over modalities, and perform a
series of experiments on the learned representations. We show that joint training with language
gives rise to interesting effects, including inducing more categorical clustering in latent space.

Introduction

How does the language you speak impact the way you see the world? The Sapir-Whorf
hypothesis presents a strong claim of linguistic relativism -- that language determines thought and
that cognitive categories are primarily derived from linguistic categories (Kay & Kempton, 1984).
While controversial, this hypothesis has inspired work for the last five decades and remains a
current area of research (Berlin & Kay, 1994; Gibson, et al. 2017; Regier & Xu, 2017). Recent
computational formulations of linguistic relativism have found success in taking a moderated
approach -- perhaps language impacts cognition some of the time, but not always (Regier & Xu,
2017). We adopt this moderated view and apply it it to computers. How does learning a joint
distribution over perceptual and linguistic modalities impact representations in neural models?
We train a multimodal variational autoencoder (MVAE) to learn to joint distribution over colors
(image modality) and color-descriptions (language modality). VWe propose a set of experiments
which interrogate various aspects of the learned embeddings. As a sanity check we first show
(1) that MVAEs can learn joint distributions over image and language modalities when the latent
space is not overly constrained. Next we perform a series of experiments (2) examining learning
trajectories for basic color terms, grounding the analysis in previous color theory, (3) assess the
degree to which we can begin to measure semantics as transformations in latent space and
finally (4) attempt to provide qualitative and quantitative characterizations of the impact of
language on latent representations of images.

Dataset

Monroe et. al (2017) introduce a color reference game dataset using a online behavioral
experiment, which pairs workers on mechanical turk (using a framework introduced by Hawkins,
2015). During the reference game, workers are split into speaker/listener pairs. During each trial
the participants view a set of three colors. One of the colors is assigned as the target. This
information is made known only to the speaker. The speaker’s job is to provide a description of
the target color so that the listener can pick it out of the set of colors. The experimenters
manipulated task difficulty in three conditions by varying the distance between the colors.
Intuitively, in contexts in which multiple colors were “closer” in perceptual space, descriptions
are required to be longer to differentiate among them, whereas we expect the opposite when



the colors are distinct. Rather than focus on condition-level effects, we train our model only on
the target RGB color and accompanying description. (Future work will attempt to capture the
pragmatic effects of context.) This dataset is amenable to modeling with MVAE models in that
the image and language modalities are both sufficiently complex to provide interesting variation
in the data while also being fairly simple. (A known issue with VAEs is blurriness in modeling
complex images.) The image modality data consists of RGB pixels while the descriptions are
typically between 2-7 words (max 18 words).

Model

Variational autoencoders (VAESs) are latent variable generative models which capture
Po(x, 2) = po(xlz)p(z) , where p(z)is a prior over the latent variable zand py(x|z) is a “decoder”
model, typically implemented as a neural network with parameters 6. The objective, to
maximize the marginal likelihood of the data p(x), is intractable, so the evidence lower bound
(ELBO) objective is optimized instead. The ELBO is defined using an inference network g4 (z|x):

E o coMog(py(x [ 2)] — BKL[ q4(zlx) [| p(2)]

Typically . =1 and Bis annealed to 1 while training. Multimodal variational autoencoders
extend the basic VAE framework to » modalities, which are conditionally independent given the
latent variable z. Wu & Goodman (2018) present a version of this framework which uses a
product of experts as the approximating distribution for the joint posterior.

A known difficulty training VAE models is that the regularizing KL term can be overly
influential early in training. This can lead to learning a degenerate joint distribution highly
concentrated around modal values in the dataset. Standard solutions include annealing the
KL-term during early epochs (Bowman et. al, 2015). We faced a similar problem. Given our
training paradigm, which used a single pixel representation, our reconstruction loss was about
an order of magnitude smaller than the regularizing term leading to degenerate latent
representations. Previous work with MVAEs on image data used images that were 64x64,
leading to higher reconstruction losses. Increasing the image size to 64x64 or, equivalently,
scaling the reconstruction loss by the constant factor 4096 solved the problem of only learning
modal colors.

In the following experiments, we compare the latent embeddings in several models
under different parameters settings. Of particular importance is the size of the latent dimension
(z-dim) and the number of modalities (multimodal vs unimodal). Our primary interest is in
comparing the learned representations of uni-modal models to multimodal models, particular the
uni-modal image to multimodal language and image model. Table 1 contains information about
the trained models for reference.



model name reference modalities z-dim Embedding size
uni_img_4 image L
uni_lang_4 language 4 200
mim_< image-+language 4 200
mm_2 image+language 2 200
mm_10 image+language 10 200
mm_20 image+language 20 200

Table 1, Summary of frained models parameltenzations.

Experiments

Experiment 1: Sanity check - learning a joint distribution over color/color-descriptions.

Because MVAEs model a joint distribution over modalities we
can sample from the latent embedding space. As qualitative check we
can examine the color/color-descriptions generated from this space.
Figure 1. Shows a set of sample image reconstructions given various
descriptions of the color “blue.” Clearly the model is learning reasonable
associations between colors and images capturing semantics of various
linguistic devices such as word order (e.g. green-blue is different from
blue-green), compositionality (e.g. green-ish blue), even novel
descriptions (e.g. “robin’s egg blue”)

Experiment 2: Basic color learning trajectories

Berlin & Kay (1969) is seminal work on the psycholinguistics of
color. While their broader goal was to propose a set of universals in
linguistic description of color space, they also proposed an ordering for
learned color terms. Under their proposal “white” and “black” will be
learned first, then “red”, then “green”, then “yellow”. While “white” and
“black” were not colors in our dataset, we can examine basic color
learning trajectories for the other colors in our models. For each epoch
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we encode the basic color terms “red”, “blue”, “green”, “brown”, “grey”,
“yellow”, “purple” and “pink” and reconstructed the RGB values the
model has learned (data shown uses mm_4). We can inspect the color
reconstructions at each epoch (figure 2 left facet) as well as the
distance from the final color the model converges to at the final epoch
(figure 2 right facet). Qualitative analysis indicates that the colors
“green”, “blue”, and “red” appear to learned slightly earlier (around
epoch 20) and vary less from this point on, compared to the colors
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“yellow”, “brown” and “grey.” This may be an artifact of our use of RGB
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Figure 1. Image
raconstructions of
color descriptions for
different blues.



to describe the color space. Future work should experiment with additional color description
such as HSL and CIELAB space.

Experiment 3: Semantics in the latent space

While the previous analysis focused on single word descriptions of color, these types of
responses were actually infrequent. More common were rich descriptions employing a variety of
linguistic devices (e.g. compositionality, comparatives, superlatives, negation, etc.). Among the
most common devices were suffixes such as “-ish”, “-er” and “-est” as in “blue-ish”, “blue-er” and
“plue-est”’. How does appending the suffix “-ish” impact the models encoding of “blue” in the
latent space? We show an initial description of semantics in latent space in Figure 3. Of note,
using the adjective “true” appears to describe the central point in latent space for the colors
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“green”, “blue” and “red”. Future analyses will extend this description of latent-space semantics.

Learming trajectory, #-dim: 10

Figure 2. Basic color term learning trajectories. Left facet: horizontal axis is training epoch (1-100),
vertical axis is basic color term. Colors are current RGB reconstructions for the basic color term. Right
facet: horizontal axis is training epoch (1-100). Vertical axis is euclidean distance in RGB space from
final color converged to.

Experiment 4: Quantifying the impact of linguistic knowledge on image representations

Given our framing of this project in terms of the Sapir-Whorf hypothesis -- that language
has some impact on cognition -- we’d like to quantify the extent to which knowing language
impacts what you know in other domains, or at least, how that knowledge is structured. Figure 4
shows tSNE plots comparing the latent representations for image encodings in a unimodal
image model (uni_img_4) compared to image-only encodings in a multimodal model which has
learned a joint distribution over colors and images (mm_4). For comparison, we show the tSNE
plots of language encodings in a unimodal language model (uni_lang_4) with language-only
encodings in a multimodal model (mm_4). Two things are of note. First, the tSNE plot of image
clusters trained with the multimodal model appear to show more categorical structure (more
well-defined clusters). Intuitively, this appears to indicate that the linguistic knowledge is
providing additional structure over and above what is learned with image-data alone. The same
does not appear to hold in the case of language -- adding knowledge of colors does not appear
to significantly alter the clusters learned for language. To test the first observation we can
examine whether there is a higher degree of clustering in the image embeddings. We use a



non-parametric clustering algorithm -- Bayesian Gaussian Mixture Model with Dirichlet Process
prior, which allows us to infer an approximate distribution over the parameters of a Gaussian
mixture distribution. This formulation allows us to infer the number of components from the data.
We run this clustering algorithm for 100 simulations on our embeddings from the uni_img_4 and
mm_4. These simulations give us a distribution over the number components. We use a
test-statistic, comparing the number of components using an independent samples t-test.
Results indicate that the training with language results in clusters that have significantly more
categorical structure, reducing the number of components by almost half. Figure 5 shows the
results of this analysis.

Conclusion

Jointly training a neural model on visual and linguistic data gives rise to a set of
interesting changes in the learned representations. In particular, models that had linguistic
knowledge (jointly trained on language- and image-data) induced more categorical structure
when we examined embeddings for images alone. The same did not appear to hold for
embeddings of language alone. This appears to indicate a possibly privileged role that language
plays in providing categorical scaffolding in other domains. We present these findings in light of
the Sapir-Whorf hypothesis which predicts that language uniquely defines conceptual structure
in humans. Future work will extend the analyses started here, in particular, examining the extent
to which we can characterize the kind of categorical structure induced by language on other
domains, like the visual domain of color perception. As a by-product of this framework we can
also examine semantics in the latent space, how linguistic devices give rise to regular
transformations in embeddings.

Collaborators

This project is a joint collaboration with my labmate Mike \Wu. We worked on the
modeling and experiments together.
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Figure 3. Semantics in the latent space. Axes are first two principal components from PCA trained on
full dataset. Points are samples from latent space for color terms in varying semantic contexts. We see
some consistencies, for example the description “True X" typically results locations befween "X and
“K-ar”



Figure 4. Language data adds more
structure to image embeddings (top right
compared to top left) while image data
impacts language embeddings less (bottom
row) visualized via tSNE plots.
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Figure 5. Jointly training with language leads to
more categorical structure in image
embeddings. Results of running n=100
simulated non-parametric (Bayesian Gaussian
Mixture Model with Dirichlet Process prior) to
infer number of clusters. {{7198) = 61.6, p <

1e-100 .
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