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Introduction

Accurate and early detection of earthquakes 1s of critical importance 1n formulating an effective
response. Hundreds of thousands of humans are 1n a constant state of danger due to living in areas
vulnerable to earthquakes. The problem is compounded if the area experiences constant low
magnitude earthquakes that, although does not pose danger to human lives, present a challenge 1n
evaluating the potential danger of the earthquake. Generally, an earthquake of magnitude less than 4
does not constitute a danger. However, a higher magnitude earthquake demands an immediate
response. The current detection system generally evaluates the earthquake magnitudes correctly in
roughly 90% of the time.

The purpose of this project 1s to detect the magnitude of an earthquake given a set of characteristics.
These characteristics were extracted from the earthquake waveforms for different snippets of time,
ranging from 1 to 4 seconds. The main goal is to be able to use the smallest time interval possible to
accurately predict the earthquake magnitude. Achieving this goal would be of huge value in earthquake
early warning systems.

Data

We have 373,731 earthquake observations, each recorded on a 3-component geophone. For each
observation, we have a number of 24 extracted features of the waveform, such as peak amplitude,
cumulative absolute velocity, and maximum step between consecutive samples. We also have different
attributes for each earthquake, such as magnitude, hypocentral distance and hypocentral depth. We
also have >800,000 non-earthquake data. Figure 1 below shows the distribution of our dataset, and
figure 2 shows a sample waveform
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Figure 1: Histogram of the earthquake magnitude in the labelled data
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Figure 2: Sample earthquake waveform from dataset

Algorithm

We approached this problem by developing two independent neural networks that we envision to
work hand-in-hand. The first approach 1s a 1-D convolutional neural network that takes a 4-second
waveform as an mput (figure 2), and performs a binary classification to determine whether it’s an
earthquake (1) or noise (0). The second approach 1s a fully-connected neural network that, when the
signal s of an earthquake, it predicts its magnitude from a given set of features. Both algorithms are
explained below:

1. 1-D Convolutional Neural Network

The architecture we chose for the 1-D Convolutional Neural Network is shown in figure 3. The
waveform in figure 1 is used as an input, with shape (m, 400,1). The four convolutional layers
consists of 18, 36, 72 and 144 filters, respectively, and kernel size of 2. Each convolutional layer is
followed by a max-pool layer, and then batch normalization, and dropout of 0.2 for regularization.
The final dense layer uses sigmoid activation to give either 0 or 1.

This part of the code utilized was done 1n Keras. We looked through the available codes it Github
repository to decide on an architecture design and coded accordingly. The data was split as 90%
for training, and 10% for validation/testing.
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Figure 3. Architecture of 1-D CNN

2. Fully-Connected Network

In the second network, a fully connected neural network 1s used to predict the earthquake magnitude.
We extracted 24 different features based on the waveform that formulated the input to the neural
network. The data have generally been split to a 90-10 split between the training set and
test/development set. We modified the model used in class based on TensorFlow implementation.
The model generally has the following architecture:

Linear -> Relu -> Linear -> Relu -> Linear -> Softmax
We tested the impact of different hyperparameters: number of layers, 3 parameter of the 1.2
normalization, and the number of non-earthquake events used (since we have many more non-
earthquake events than real earthquakes). We started with simple prediction (earthquake and non-
earthquake) and then explored the model’s ability to predict the magnitude.

Results

1. 1-D Convolutional Neural Network

We explored the impact of a different number of layers, different optimizers and different learning
rates. The summary of the trials 1s listed in the table below. Although we managed to get an almost
perfect accuracy on the training set, we couldn’t manage to bring up the test accuracy, which was
constant at 55%. We tested different fixes for overfitting: we normalized the input data, applied
dropout, applied L-2 regularization in the dense layer, and tried a simpler CNN architecture to reduce
complexity, but the test accuracy didn’t change.

The model that gave the best results for training accuracy was the model with 4 layers, and Adam
optimizer with 0.01 or 0.001 learning rate. In this model, the input data wasn’t normalized, but we



applied batch normalization after each Max-pool layer. Figure 4 shows the accuracy of this model for
training over 80 epochs.

Table 1. Summary of different 1-D CNN trials

#Layers Optimizer | Learning rate Normalized input Accuracy test acc
4 SGD 0.001 no 52% 44%
4 SGD 0.01 no 55% 55%
2 Adam 0.001 yes 55% 55%
3 Adam 0.001 yes 91% 55%
4 Adam 0.001 no 99% 55%
4 Adam 0.01 no 99% 55%
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Figure 4 1-D CNN training accuracy

2. Fully-connected network

In the fully connected network, we explored the impact of different number of layers on predicting
whether the event 1s an earthquake or not (based on equal distribution of earthquake and non-
earthquake events. Results, shown 1n Table 1, indicate that a simple architecture can give accurate
predictions. Test set also give comparable results with close to 98% accuracy.



Table 2: Impact of number of layers on training accuracy for a binary classification in the fully
connected network (equal distribution of earthquake and non-earthquake)

3 layers 5 layers 10 layers
98% 99% 99%

We also tested the impact of the B hyperparameter in 1.2 normalization. Results, shown in Table 2,
indicate results close to 99%. Test accuracy in this case is also close to 98%

Table 3: Impact of § hyperparameter on training accuracy for a fully connected network with binary
classification (5 layers and equal distribution of earthquake and non-earthquake).

0.1 0.01 0.001
96% 98% 99%

Lastly, we explore the neural network ability to predict the earthquake magnitude: either <3, between
3-4, between 4-5, or >5). We explored the following hyperparameters: Number of layers and number
of non-earthquake events used. The best case scenario with the simplest architecture was found with
5 layers and close to equal distribution of earthquake and non-earthquake events. The test accuracy in
that case was 88%.

Table 2: Impact of number of layers and number of non-earthquake events used on training accuracy
for a fully connected network with a softmax optimization

Number of non-earthquake data used
# of Layers 50k 150k 300k
3 layers 82% 86% 86%
5 layers 83% 86% 89%
10 layers 84% 87% 89%

Future Work

First of all, we want to mnvestigate why our test accuracy for the 1-D CNN 1s almost random while we
are overfitting the training dataset. We will collect more earthquake data. Then we will train the model
using the full data set and then test the accuracy on the test set. We will also examine the
hyperparameters to see how that impacts the results. We also want to test a different architecture,
namely a 2-D Convolutional Neural Network using spectrograms instead of 1-D temporal, to see if it
gives favorable results. We also would like to test if all 24 features are needed, or if only a sub-set is
needed.



Lastly, we want to minimize the time window that we use for our magnitude detection. In our initial
run, we used a 4-second time interval. Moving forward, we will run our algorithm on the smaller
mntervals, and then compare the accuracies achieved for each time interval. Using the smallest time
mnterval possible with high accuracy will be very of huge importance for early warning systems, and
could reduce the damage that 1s caused by a few-seconds delay.
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