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Abstract

Atrial fibrillation is the most prevalent heart rhythm disorder. A novel procedure
to treat this disease involves acquiring electrical activation maps using 64 elec-
trodes. To interpret this kind of information, physicians usually rely on rule-based
interpolation schemes. In this work, we use a convolutional neural network to
enhance simulated, low resolution images of activation times in atrial fibrillation.
Our models outperform bi-cubic interpolation and are able to better define sharp
edges in the images. With further refinement, we expect this to be a useful tool to
interpret atrial fibrillation maps.

1 Introduction

Atrial fibrillation is the most common rhythm disorder of the heart. It is associated with chaotic
electrical waves that lead to rapid and irregular beating of the upper chambers. A novel procedure
to diagnose and treat this disease is to insert a catheter with 64 electrodes into the chamber to
identify electrical activation patterns [6]. However, this data is sparse and difficult to interpret due
to its low resolution. Increasing the quality of these activation maps will help physicians to deliver
more effective treatments. This problem is particularly suitable for deep learning, super resolution
techniques. Here, we take simulated low resolution images of atrial fibrillation activation times and
enhance them with a convolutional neural network. The input of our model are gray scale images that
are downscaled and the output are the super resolution images, which we compare to the original
image.

2 Related work

Traditionally, atrial fibrillation mapping has been interpolated using ruled-based approaches [6]. On
the other hand, there are many approaches to do super-resolution using deep learning techniques.
For example, generative adversarial networks have been used [5]. Other work focuses on the speed
of the model to achieve real-time performance [7]. Additionally, there has been work regarding the
loss functions to achieve better visual perception of the enhanced images [4]. One of the simplest
and most effective models was introduced in [3]. This approach uses a convolutional network with 3
layers and a mean squared error loss function. We choose this approach over the other because we are
not particularly interested in the speed of the model, such as in [5] or in the visual perception, such
as in [7, 4]. We are interested in the accuracy of the predicted images with respect to the original
images, and a mean squared error loss accomplishes this goal.
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Figure 1: Convolutional neural network for super-resolution. The model is defined by layers with
different number of filters and filter sizes. Adapted from [3]

3 Dataset and Features

Because is nearly impossible and unethical to collect simultaneously low resolution and high resolu-
tion data from human hearts, we use computational models that simulate the electrical activity of the
heart [2]. We generate 400 images of regular activations and more than 800 images of fibrillation
of 330x330, representing the activation times. Since super resolution approaches focus only on
parts of the images, we obtain 100 sub-images per example of 33x33 pixels. The labels are, at the
most, 21x21, depending on the specific filter sizes. Due to the nature of the electrical waves in the
heart, rotated and flipped images also represent valid examples. We can augment our dataset 6 times,
considering three 90 degree rotations and two flipping operations. The final dataset contains 718,200
images. We separate 10,000 images for development. For the test set, we generate 6000 more images.
As features, we use the grey scale image values directly into the model and we also use this as the
output.

4 Methods

We start by briefly describing the approach in [3]. This method uses 3 convolutional layers to predict
the high-resolution counterpart of a low resolution image, upscaled using bi-cubic interpolation. The
loss is defined as mean squared error between the pixels of the predicted high-resolution image and
the training data:

N .
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where y represents the labels in the training set, y;; is the value of the jth pixel of ith training
example and § represents the output of the model given the training input. Figure 1 shows a
diagram of the model. We use Relu activations and He initialization for the parameters. We need
5 hyper-parameters to define the model: 3 filter sizes f;, fo and f3, and the number of filters for
the intermediate layers n; and ng. This model was implemented on Keras [1], based on the code
found in https://github.com/jormeli/srcnn-keras. We use an Adam optimizer with default
parameters and a mini-batch size of 32.

5 Experiments/Results/Discussion

Following the recommendations outlined in [3], we keep the number of layers to 3, as it has been
shown that changing this parameter does not improve the performance significantly. Instead, we
focus on the number of filters and the filter size of the second layer f. We set f; =9 and f3 =5. We
start by adjusting the learning rate. To do this, we select a model with parameters n; = 64, ng = 32,
f2 =1 and a scaling of 3x. We vary the learning rate from le-2 to le-5 in a logarithmic scale. After
training these models for 20 epochs, we select a learning rate of 1e-3 because it achieves the lowest
training and development loss (Figure 2). We locked this value at this point.
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Figure 2: Learning rate tuning for n; = 64, ny =32 and f2 = 1. The optimal rate is 0.001

scale n; ng fo trainingloss development loss

3 64 32 1 1.80e-03 1.82e-03
3 64 32 3 1.68e-03 1.76e-03
3 128 64 1 1.70e-03 1.75e-03
3 128 64 3 1.46e-03 1.47e-03
3 128 64 5 1.79e-03 1.82e-03
3 bi-cubic 3.7e-03

9 128 64 1 5.98e-03 6.22e-03
9 128 64 3 5.69¢-03 5.95e-03
9 128 64 5 5.67e-03 5.89¢e-03
9 bi-cubic 1.21e-02

Table 1: Summary of models evaluated

We tested our models with two levels of scaling: 3x and 9x. Our results, summarized in Table 1 show
that the best models are the ones with more filters (n; = 128 and ny = 64) and that increasing the filter
size fo above 3 either decreases the accuracy or marginally improves it. For both cases, our model
performs better than bi-cubic interpolation. After selecting the model with n; = 128, ny = 64 and f
= 3, we evaluate them with an independent test set of 6000 images. For 3x scaling, the loss slightly
higher: 1.61e-3, compared to a development loss of 1.47e-3, but this is still better than the other
models. For 9x scaling, the test loss is 6.33e-3, which is higher than the training and development
loss, but still close.

Qualitatively, as can be seen in Figure 3, the selected models produce images than are accurate for
the smooth part of the images, but have problems in regions of sharp edges. Although, compared to
bi-cubic interpolation, the models present a better approximation of the edges.

6 Conclusion/Future Work

We have used a convolutional neural network to enhance atrial fibrillation maps. Although the mean
squared error was reduced with respect to a simple bi-cubic interpolation, the result are not visually
pleasant. This could be caused by the mean squared error loss that we used. Despite this, the model is
able to better interpret the sharp edges in the image. For the future, we would like to explore different
loss functions that could improve our predictions. Additionally, we would also modify all filter sizes
to find the optimal architecture.
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Figure 3: An example from the test set for 3x and 9x scaling where an entire image is reconstructed.

7 Contributions

Francisco Sahli Costabal did the entire project by himself, from the image generation to writing the
report.
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