

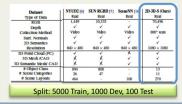
Evaluating Mask R-CNN Performance on Indoor Scene Understanding Shiva Badruswamy shivalgo@stanford.edu

Indoor robotics and AR are fast becoming the fundamental building blocks of future home living. However, evaluations on indoor images are non-existent due to privacy issues and acquisition cost . A variety of fast R-CNN instance segmentation NNs exist for outdoor scene understanding. Here, we use a modified, state-of-the-art Mask R-CNN on indoor 3D projected to 2.5D images to predict instances of 12 foreground classes on indoor, high-def images. A smaller MR-CNN performs well on Class loss and comparably on Mask and Box Loss.

Introduction S2D Equirectangular Projections loss Coco Faster R-CNN 2 chairs 3 sofas Mask FCN

- Mask R-CNN has detection speeds in 4fps to 45fps (depending on use case) but is less accurate than Faster R-CNN, which is slower than 4fps even.
- Baseline MR-CNN performance highly dependent on quality of mask annotations
- Hard network to gauge performance: requires both bounding box and mask annotations.

Data At most 1 instance per image



Ground Truth Generation Label Мар 1080 X 1080 Faui-Ground Truth Masks Truth Boxes rectangular RGB projections

Each pixel color is encoded as 256-base number indexing to an instance label map.

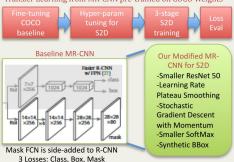
Index = 256*256*RGB(0)+256*RGB(1)+ 1*RGB(2)

- Pixel location is tagged with label. Semantically colored pixels translated to binary masks. Then, compressed and stored using RLE byte encoding.
- GT Bounding Boxes are extracted from masks. Images with no foreground labeled masks are discarded.

ing, Validation, and Test Data from the same distribution 100% of locations in Area 3 and 50% random in the large Area 5

Models

Transfer Learning from MR-CNN pre-trained on COCO Weights



Results

Robust transfer learning, smaller feature maps, un-crowded, large instances lets us decrease LR to 1e-04 (0.02 in MR-CNN Paper) for fast runs.

Evaluation Performance	mAP	mAR	F1
Fine-tuned COCO Baseline	0.03	0.53	0.06
Transfer-learnt S2D MR-CNN	0.31	0.73	0.43

Modified MR-CNN Eval mAP is 10X higher than Baseline

	MR-CNN Box	MR-CNN Class	MR-CNN Mask
Fine-tuned Coco baseline Training	0.5817	0.5912	0.5680
Fine-tuned Coco baseline Val	0.5869	1.039	0.5583
Transfer-learnt S2D MR-CNN training	0.7574	0.093	0.6964
Transfer-learnt S2D MR-CNN Val	0.7445	0.1103	0.6925

- Our modified MR-CNN Sparse Cross Entropy SoftMax Class Loss is lower than Baseline, as we have low occlusion, simpler feature maps, and just 12 classes.
- Both training and validation losses converge in several hyperparam tuning runs indicating model's robustness for transfer learning to indoor features.

Summary

- Our model demonstrates that the state-of-the-art Mask R-CNN gains in accuracy in less occluded, less dynamic scenes.
- 1/6th reduction in training loss and almost 1/10th reduction in validation loss is a promising result to investigate further.
- Adding RGB depth via z-axis distance or via surface normals could lead to further accuracy improvements.

Reference

- Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girschick, Mask R-CNN, 2017, arXiv:1703.06870v3 [cs.CV]
 Iro Armeni, Alexander Sax, Amir R. Zamir, Silvio Savarese, Stanford University, UC Berkeley, Joint 20-30-Semantic Data for Indoor Scene Understanding, Thomas M. Breuel, DFKI and U.Kaiserslautern, Efficient Binary and Run Length
- Morphology and its Application to Document Image Processing, 2 Dec 2007, arXiv:0712.0121v1[cs.GR]

YouTube Video Link

https://www.youtube.com/watch?v=1QsR8IcVV50&feature=youtu.be