Image Colorization

Alex Avery (alavery) Dhruv Amin (dhruv92)

- Despite several breakthroughs with II, the III continues to be the most important feature to the
- Focusing on the space, our only other criteria was that our deep learning model made us go $\hfill\Box$
- We chose to focus on colorization, which means adding realistic colors to grayscale images
- Input: One grayscale image => Output: colorized image

Data

- 10,000 images from Unsplash (95% train, 2.5% dev, 2.5% test)
- RGB to Lab (L = grayscale, a = green/red, b = blue/yellow)
- Vectorize the grayscale image; normalize and preprocess the input, generate zooms/flips/shears for generalization

conv_color

conv_res_color

Results

conv_color

Results Pending conv_res_color

Expected Predicted

Ground Truth

Image Input

256 x 256 pixel image

Image Output

256 x 256 pixel image

Classification network trained on ImageNet

0

a,b channel pixel values from -128 - 128

ResNet Input

L channel intensity values from 0-100

Features

Conv - F:128, K:3, S:1, P:1, A: relu Conv - F:128, K:3, S:2, P:2, A: relu Conv - F:256, K:3, S:1, P:1, A: relu Conv - F:512, K:3, S:1, P:1, A: relu Conv - F:256, K:3, S:1, P:1, A: relu Conv - F:256, K:3, S:2, P:2, A: relu Conv - F:128, K:3, S:1, P:1, A: relu Conv - F:64, K:3, S:2, P:2, A: relu Conv - F:64, K:3, S:1, P:1, A: relu

Conv - F:64, K:3, S:1, P:1, A: relu Conv - F:2, K:3, S:1, P:1, A: tanh Conv - F:32, K:3, S:1, P:1, A: relu

Future

Discussion

- Implement color rebalancing as discussed in original colorization paper
- Experiment with alternative loss functions

Hard to overcome "browning". Brown decreases loss since similar to most

iterative approach. Science and art.

Best results achieved by transferring the classification layer of the

colors. More diverse dataset increases browning.

Inception ResNet to the colorization network. Allows model to get a sense

of what's in the picture

Difficult to understand what aspects of the model led to ideal colorization

due to lack of reliable quantitative guiding metric, resulted in a more

 Apply to video -- additional objective of keeping adjacent frame colorization consistent

- Zhang, Richard, Philip Isola, and Alexel A. Efros. "Colorful image colorization." European
 Conference on Computer Vision. Springer, Cham, 2016.
 Cheng, Zezhou, Qingxiong Yang, and Bin Sheng. "Deep colorization." Proceedings of the IEEE
- International Conference on Computer Vision. 2015.
- learning of global and local image priors for automatic image colorization with simultaneous classification." ACM Transactions on Graphics (TOG) 35.4 (2016): 110.

 Zhang, Richard, et al. "Real-time user-guided image colorization with learned deep priors." arXiv lizuka, Satoshi, Edgar Simo-Serra, and Hiroshi Ishikawa. "Let there be color!: joint end-to-end
- 449f8d Baldassarre, Federico, Diego González Morín, and Lucas Rodés-Guirao. "Deep Koalarization: Image Colorization using CNNs and Inception-ResNet-v2." arXiv preprint arXiv:1712.03400 (2017). /medium.freecodecamp.org/colorize-b-w-photos-with-a-100-line-neural-network-53d9b4
- Chollet, F. (2015) keras, GitHub. https://github.com/fchollet/keras

References