A Recurrent Neural Net for Neurons: Continuous Decoding of Intracortical Brain Signals for BMI Applications

Jonathan Zwiebel CS '21, Robert Ross CS '21, Samuel Lurye EE '20
[jzwiebel, ross, sluryel]@stanford.edu

Motivation

Brain-Machine Interfaces (BMIs) are becoming feasible clinical treatments for paralyzed patients. Using just thought, patients are able to move robotic arms and computer cursors with increasing precision and dexterity. Basic neuroscience shows that neural dynamics are not effectively modeled with linear models. This project builds on existing linear methods to continuously decode 14-dimensional binary neural signals into 2-dimensional X-Y positional coordinates. The goal of this project is to create a model that can give a live prediction of position given a live stream of neural signals.

Data

- The data consisted of 11,136 trials (1) of a monkey performing radial reach tasks to one of 48 targets (Figure 1).
- Each trial consists of 192x800 matrices representing the presence or absence of a spike for any of the 192 neurons for an 800ms sample duration (Figure 3).
- Additionally, each trial contained a 2x800 matrix containing the true X-Y position of the monkey's hand.
- We extracted the hand velocities and target vectors for each run (Figure 3). Furthermore, we binned this data into 25ms bins to reduce variability.

Model

Our Model:

We used the sequential structure of the data and the necessity to provide five predictions, we decided to use a forward-facing many-to-many RNN. We initially planned on testing basic RNNs, GRUs, and LSTMs, but opted exclusively for LSTMs after running into exploding gradient issues. Each cell took in a 192 element vector as an input and had its output fed into a series of fully connected ReLU layers which reduced its size to a 2 element vector. Note that the final FC layer does not include any activation function, as we are attempting to predict real number values. We experimented with various RMSE Loss and Huber Loss after determining that the distribution of our loss across training examples contained many outliers. The average length of our model was a crucial hyperparameter and we sampled values ranging from 30 to 100.

Relative Position vs Velocity

One of the major distinctions between our models was the choice of position or velocity as our target prediction. In models with position as a target we compared our predictions directly to the true raw values for both the loss and score function. In models with velocity as a target we calculated velocity from our raw dataset and compared it to predicted velocity for our loss function. To score velocity models on the test set we calculated a stepwise predicted position based on our predicted velocity and compared it to the true dataset values for position.

Results

For one of our models we calculated velocity values over time intervals of 25ms. To combat exploding gradients we implemented gradient clipping on all 25 measurements, using binned sums of neuron fire counts over an interval. Weights, which we found drastically decreased initial training loss.

Discussion

- Fewer hidden units in the LSTM cells result in comparable performance at significantly shorter training periods.
- 100ms initial skip time with a 500-cell RNN maximized performance. This is consistent with the data distribution shown in Figure 2.
- Velocity-trained RNNs performed substantially worse because X-Y features were abstracted away.
- Multiple fully-connected layers in between LSTM cells improved performance.
- Sequence lengths below 200ms led to severe overfitting, even with dropout.
- Binned velocity models always overfit for our data as they resulted in sequence lengths of 23-30.
- Our model was able to outperform the naive Wiener filter but was not able to match the performance of the Kalman filter.

Future Work

- Gather significantly more data. The amount of trials we had is small for modern deep learning algorithms.
- Update loss function. More sophisticated loss functions should penalize smoothness and directionality.
- Develop test sequences of significant length (10-20s) and test extended model performance over them.
- Feed previous position predictions as inputs to future states.
- Train with lower learning rate and higher hidden layer size on more powerful computers.

References

1. All data was generously provided by Sumeet Vyas-ordered from Professor Arumugam Braun’s Neural Prosthetics Systems