

Separating Overlapping Galaxies with Mask R-CNN

Sowmya Kamath sowmyak@stanford.edu

Objective

Most observed astronomical objects have some overlap with neighboring objects. However, scientific measurements require isolated galaxy images. We try to perform detection and segmentation of overlapping galaxies using Mask Region-based CNN (Mask R-CNN).^[1]

Mask R-CNN

- Framework performs object detection in parallel with generating high-quality segmentation mask on each Region of Interest (RoI).
- Backbone: ResNet-101 with Feature Pyramid Network (FPN) → extracts RoI.
- Head: applied separately to each RoI
 - $\circ \ \ \text{Faster R-CNN}^{[2]} \rightarrow \ bounding \ box \ recognition.$
- \circ Mask \rightarrow segmentation.
- This analysis used Tensorflow, Keras implementation of the architecture. [3]

$\begin{array}{c} \underline{\textbf{Loss function}} \\ \text{Multi-task loss on each sampled RoI:} \\ \\ L = L_{\text{cls}} + L_{\text{mask}} + L_{\text{box}} \\ \\ \hline \\ - (y \log(p) + (1-y) \log(1-p)) \\ \\ \hline \\ - \sum_{|z| < 0, y \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)} \\ \\ - \sum_{|z| < 0, x \neq 0} \text{smooth}_{L_i(p)}$

Data

Simulated images of two-galaxy pairs with varied overlap.

	Dataset	Training	Validation	Test
		18,000 (72,000 with augmentation)	1,000	1,000
		90%	5%	5%

Training

- Initialize with pre-trained weights on MS COCO^[4].
- · Mini-batch size: 64

Two-stage training

- 1. Head only: 15 epochs, 0.001 learning rate
- 2. All layers: 20 epochs, 0.0005 learning rate

Results

• Test set mean Average Precision (mAP): 0.87

Future Work

 Network performance limited by dataset: galaxies do not have sharp edges.
 Modify end layers of

network to output individual galaxies instead of segmentation maps.

• Include different kinds of sources and perform classification as well.

References

- [1] https://github.com/facebookresearch/detectron
- [2] https://github.com/rbgirshick/fast-rcnn
 [3] https://github.com/matterport/Mask RCNN
- [4] http://cocodataset.org/#home