Objective

Most observed astronomical objects have some overlap with neighboring objects. However, scientific measurements require isolated galaxy images. We try to perform detection and segmentation of overlapping galaxies using Mask Region-based CNN (Mask R-CNN).[2]

Mask R-CNN

- Framework performs object detection in parallel with generating high-quality segmentation mask on each Region of Interest (ROI).
- Backbone: ResNet-101 with Feature Pyramid Network (FPN) -> extracts ROI.
- Head: applied separately to each ROI
 - Mask -> segmentation.
- This analysis used Tensorflow, Keras implementation of the architecture.[1]

Loss function

\[
L = L_{cls} + L_{mask} + L_{box} + \sum_{i=0}^{s} \text{SmoothL1}(\hat{y}_i) - \sum_{i=0}^{s} \log(p_i)
\]

- Multi-task loss on each sampled ROI.

Data

- Simulated images of two-galaxy pairs with varied overlap.

Example training data

- Overlapping galaxy image
- Segmentation Mask

Training

- Initialize with pre-trained weights on MS COCO[4].
- Mini-batch size: 64

Future Work

- Network performance limited by dataset: galaxies do not have sharp edges.
- Modify end layers of network to output individual galaxies instead of segmentation maps.
- Include different kinds of sources and perform classification as well.

Results

- Test set mean Average Precision (mAP): 0.87

References

[1] https://github.com/facebookresearch/detectron2
[3] https://github.com/matterport/Mask_RCNN