Predicting an optical filter's parameters from its transmission spectrum

Arushi Arora

arushi15@stanford.edu
Department of Electrical Engineering, Stanford University

1. Problem statement

Given the transmission spectrum of an optical filter, specifically a fiber Bragg grating, can we use deep learning to predict its essential physical parameters: index modulation, fiber loss, and the DC:AC modulation ratio?

Adapted from http://www.fbgs.com/technology/fbg-principle/

3. Dataset

- Since this is a fairly niche problem, no publicly available dataset exists
- Thus, the dataset was created in-house
- A well-known MATLAB code, developed on transmission theory, was used to create the transmission spectra
- The data was pre-processed to extract its features before using it as the input to the neural network

4. Examples of data

5. Feature extraction from spectra

The image of the spectrum cannot be used as is due to the enormous resolution (~9 million points/image) it would take to encode the many different peaks in the spectrum.

The six most important features of the transmission spectra were extracted from the figures

- Presence of peak (0/1)
 Peak height ∈ R(0,1)
- Distance from previous peak ∈ R (0,∞)
- 4. Peak width $\in R$
- 5. Peak prominence $\in R(0,1)$
- 6. Bandwidth

6. Neural network architecture

7. Results

For one example in test set:

Truth	Predicted
$\Delta n = 3.23 \times 10^{-3}$	$\Delta n = 3.22 \text{ x} 10^{-3}$
Loss = 0.21	Loss =0.16
$\alpha = 0.57$	$\alpha = 0.57$

