Overview
Novel Deep Learning Approach for the Laplace equation
\[\Delta u(x) = f(x), x \in \Omega \subset R^d \]
\[u(x) = g_D(x), x \in \partial \Omega \]

Motivation
- Traditional methods in engineering are good at \(d = 1, 2, 3 \);
- For high dimensions, they suffer from the curse of the dimensionality;
- Deep Learning is a very promising approach.

Datasets
- Generate Boundary Data \((x_i, y_i) \in \partial \Omega, \ (g_D)_i = g_D(x_i, y_i)\)
- Generate Domain Data \(\{x_i, y_i \in \Omega, f_i = f(x_i, y_i)\} \)

Data Generation: A 2D Example.

Models
Boundary Network \(A(x, y; w)\)
Approximation on the boundary
PDE Network \(N(x, y; w)\)
Coupled with \(A(x, y; w)\)
Approximation within the domain
Loss Function
\[\sum_{i} (f(x_i, y_i) - u(x_i, y_i))^2 + \sum_{i} (f(x_i, y_i) - \Delta u(x_i, y_i))^2 \]

Training Algorithm (GAN style):
for number of training iterations
for \(k \) steps do
sample minibatch on the boundary
train the boundary network
end for
sample minibatch within the domain
train the PDE network
end for

Results
- PDE: \(\Delta u(x, y) = f(x, y) \)
- Boundary condition: \(u(x, y) = g_D(x, y) = 0, x, y \in \partial [0, 1]^2 \)
- Exact Solution: \(u(x, y) = \sin(\pi x) \sin(\pi y), f(x, y) = -4\pi^2 u(x, y) \)

Insights
- For small dimensions, increasing #layers does not increase accuracy, but accelerate convergence.
- For large dimensions, more iterations in training are needed to see convergence, while increasing #layers may also accelerate convergence.

Future Work
- Generalize results to other types of PDEs.
- Investigate algorithms for ill-behaved solutions, such as peaks, exploding gradients, oscillations, etc.

References