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Goals Results
e Apply Deep Reinforcement Learning methods towards ) ) )
solving Pong e Discount factor has no noticeable impact on
e Difficulty lies in understanding image, large state = convergence rate (also tried with discount
space, and delayed rewards 0 = irdel3 factor of 0.9)
P e Convolutional neural network expectedly
-5 leads to faster convergence
Methods £ Graphs in progress:
o Used AWS EC2 p2.xlarge cluster * Training with 3 actions (up. down and stay).
(NVIDIA Tesla K80 GPU) for -1 Stead ot only 2 actions (up and do
processing . . Model 1 Model 2  Model 3
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e Tried vanilla policy gradient with Episode Number until 0
various models Pong-v0 Highest
& e Each model was run twice and the average SHE 2.05 3.13 1.22
values for each model was plotted.
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and 3 converge at the same rate. (last k)
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