

Policy Gradient Methods with Pong

Jeffrey Hu, Gregory Soh Department of Computer Science, Stanford University

Goals

- Apply Deep Reinforcement Learning methods towards
- Difficulty lies in understanding image, large state space, and delayed rewards

Methods

- Used AWS EC2 p2.xlarge cluster (NVIDIA Tesla K80 GPU) for processing
- OpenAl Gym with the stochastic environment Pong-v0
- Tried vanilla policy gradient with various models

Pong-v0

Models

- Model 1: One 200 neuron hidden layer with ReLU
- Model 2: Convolutional layer that feeds into two fully connected layers
- Model 3: Changed discount rate from 0.99 to 0.95

Commonalities

- · Adam optimizer with learning rate of 0.001
- Output of two softmax classes

Model 2 Architecture

Results

- Each model was run twice and the average values for each model was plotted.
- Model 2 converges the fastest, and models 1 and 3 converge at the same rate.

- Discount factor has no noticeable impact on convergence rate (also tried with discount factor of 0.9)
- Convolutional neural network expectedly leads to faster convergence

Graphs in progress:

Training with 3 actions (up, down and stay), instead of only 2 actions (up and down)

	Model 1	Model 2	Model 3
# of trials until 0	5056	4616	5129
Highest score	2.05	3.13	1.22
Mean score (last 1k)	0.36	1.66	-0.59
Mean score (overall)	-7.74	-4.52	-7.93

Future

- Implement using Q-learning and Deep Q-networks (DQN). Recent work has shown that DQN can reach human-level performance on a wide variety of Atari games.
- using Asynchronous Advantage Implement Actor-Critic (A3C). Research has shown that exploiting asynchronicity achieves better results than vanilla DQN and do so with computational resources.

References

- Verge

 https://www.theverge.com/2017/12/6/16741106/deepmind-al-chess-alphazero-shogi-go

 [2] Mnih, Volodymyr et al. Asynchronous Methods for Deep Reinforcement Learning (2016)

 https://arxiv.org/ndf/1602/01783.ndf

 [3] Dhruv Parthasarathy Write an Al to win Pong from scrotch with Reinforcement Learning Medium (2016)
- (2016) https://medium.com/@dhruyp/how-to-write-a-neural-network-to-play-pong-from-scratch-956b52d df&c0 (4) Guillaume Lample of all Newscratch
- 4ffee0 [4] Guillaume, Lample et al. Playing FPS Games with Deep Reinforcement Learning (2017) http://www.cs.cmu.edur-dchaplot/papers/Jaeal/1 fps_pames.pdf [5] lstvan, Stria Reinforcement forming in gomes (2011) https://link.springer.com/chapter/10.100/27878-3-642-2764-55-3-17 [6] Minig Volodyry et al. Playing Ator with Deep Reinforcement Learning (2013) https://arvix.org/pdf/13/13-5602/1.pdf [7] Andrej Karpathy Deep Reinforcement Learning-Pong from Pixels (2016) http://arpathy.githyblo.jo/2016/05/31/t/