Deep Learning for Improving Power-Accuracy of Heart Rate Monitor:

Albert Gural (agural@stanford.edu)

Stanford University

Continuous heart rate (HR) monitoring is becoming increasingly
important for health tracking and diagnostics. Modern approaches
use photoplethysmography (PPG) and typically consume a lot of
power. This work explores techniques to reduce the power of PPG-
based HR sensors to a level sufficient for continuous monitoring
(< 100 W) while still maintaining robustness.
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Basic principles of operation of PPGs, from [1].
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Experiment Design

Most work was conducted on data from the ICASSP signal
processing cup challenge [S]. As in the challenge, we attempt to
determine the heart rate for 8-second windows spaced 2-seconds
apart. The target is to minimize average absolute error (avAE). We
deviate from the challenge, however, in our goal to achieve low
power by limiting sample rate to 12.5Hz (10x decimation of the
original sample rate).

Training data comprises 12 samples of users undergoing a set
exercise routine lasting 5 minutes long. The data includes PPG,
accelerometer, and ECG data (ECG s for reference only).

We tested two approaches: a time-domain approach using
sequential deep learning models and a frequency-domain
approach using traditional deep learning. Because of the minimal
amount of provided data, we augmented it with data synthesis.

Frequency-Domain Approach

Key idea: Feed FFTs of the PPG and accelerometer signals in each
evaluation window to a neural network with categorical heart rate
bins as outputs.

Details: Inspired by [6], we chose to feed two 64-point FFTs per
signal to allow time-varying information to seep into the
classification task. The network itself takes 4 FFTs (4x32) through
three 512-node dense layers and a final softmax layer with 160
outputs (one for each frequency bin)

Results: On our most challenging synthetic dataset, the network
achieves 58% accuracy. These results generalize weakly to the
ICASSP data. ICASSP results below are the result of including the
first six samples in the training set, so only the last six should be
used to judge generalizability.

Time-Domain Approach

Key idea: Feed PPG and accelerometer signals for each 8-second
evaluation window directly into an LSTM and output the heart rate
as a category.

Details: The best model had PPG and accelerometer input (2x100)
feed directly into a 512-unit LSTM, then to a 512-neuron dense
layer, a dropout(0.5) layer, and finally a softmax layer with 160
outputs (one for each frequency bin 40...199 bpm).

Results: On a challenging synthetic dataset, the network achieves
70% accuracy. These results do not generalize well to the ICASSP
data where there is a high standard deviation average error (sdAE).
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Results and Conclusion

The time-domain approach requires less up-front processing and is
able to achieve very low error rates in most cases, but it i also
very sensitive and fails often when run on the ICASSP data.

The frequency-domain approach requires FFT-preprocessing, but is
a bit more robust especially on ICASSP, when compared to the
time-domain approach. Because the evaluation windows are short,
the FFTs have low frequency resolution and are thus less precise
than the time-domain approach in optimal circumstances. It is
possible that a combined TD and FD approach can achieve high
precision and high reliability.

Synthetic Data ICASSP avAE | sdAE
(1.5M Tr | 100k Dev) (884 Train | 884 Dev)

Time-Domain  72% | 70% (30 epochs) 5.9 BPM | 17.5 BPM
Freq-Domain  62% | 58% (30 epochs) 2.8 BPM | 8.3 BPM

Power: Independent (personal) testing on hardware suggests that
the SNRs required for both of these algorithms implies an energy
expenditure of =2u/sample. With these algorithms demonstrated
at 12.5Hz, a system running at 25uW could achieve sub-3 BPM
avAE, surpassing [4] in power, accuracy, and robustness.

However, this does not include the computational costs of
performing multiple 512x512 matrix multiplies. When factoring
the computational cost in, it is unlikely the system could achieve
sub-100pW operation.
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