Introduction

The goal of this project is to classify a text comment as being toxic, severely toxic, obscene,
threatening, insulting, and/or a form of identity hate. With a model to identify such abuses,
online platforms can effectively flag comments that threaten the safety or mental health of
their users, something companies like Twitter have recently announced plans to do ['l. Input
data is in the form of text comments and each model outputs a length-six prediction vector
with binary classifications in each category. DNN + character n-gram, CNN + character n-
gram, and LSTM RNN + GloVe models were applied. After testing, it was found that LSTM
RNNs proved most promising at this task with 93.0% accuracy and recall on the test set.

Data . Flglu;; 9147 Label Count Showing Class Imbalance
The dataset for this project was taken from 1

kaggle’s “Toxic Comment Classification | z"

Challenge”. Each text comment has a binary §10 8.449 7.877
classification within six potential labels — | 2 §

Toxic, Severe Toxic, Obscene, Threat, | S j

Insulting, and Identity Hate. The dataset) 1.595 1 405
included approximately 160,000 examples i (] sty [|
which were divided into training and test sets Toxic Severe Obscene Threat Insulting Identity
of 155,500 and 2,070 examples, respectively. Toxie Label Hate

Models

Since there are common features associated with the domains into which the text comments
are classified, a multi-task learning architecture with sigmoid activation functions for each
neuron in the last layer was implemented. The objective is to maximize recall with accuracy
as satisfying condition. Three different models were implemented as part of this project.
Each model employed Adam Optimization, Xavier initialization, and the weighted cross
entropy loss function & =-W[ylog(9)] — (1-y)log(1-9) was used to deal with the inherent
class imbalance in the dataset. Finally, a threshold was used to convert the final probabilities
vector into a binary classification vector.

Deep Neural Network (DNN) + Character n-gram

* Input Features: Character level embedding using the ord() function in python with length
equal to the maximum characters in a text comment in the data set, 6000

* 6 Layers with 6,000, 500, 100, 25, 12, and 6, fully connected nodes, with ReLU
activation except for the last layer

Convolutional Neural Network (CNN) + Character n-gram

» Input Features: Same as input features for DNN + Character n-gram

* 3 Convolution layers followed by a Global Max Pooling 1-D layer and 3 layers of fully
connected network

LSTM Recurrent Neural Network (RNN) + GloVe
* Input Features: Word2Vec embedding using GloVe (50d), first 200 words in a comment
» 2 Layers of LSTM followed by 1 layer of fully connected network

F*** You Detector: Identifying Offensive and Obscene Comments
Akshay Gupta, Sai Anurag Modalavalasa, & Alex Samardzich

{akshaygu, anuragms, asamardz}@stanford.edu

Figure 2 - LSTM RNN + GloVe Architecture Figure 3 - Results

Text File DNN CNN RNN

l Epochs Trained 50 50 20

Parameters

Glove Input: | (None, 200, 50)
Input L. }74.
(50d) H"‘"’ ! Output: | (None, 200, 50) 3,054k| 2.5k RS

Train Accuracy 85.1% | 82.9% | 93.4%

‘ LSTM Input (None, 200, 50) Train Recall 66.3% | 43.5% | 99.6%
Qutput: | (None, 200, 128) Test Accuracy 84.0% | 83.1% | 93.0%
Test Recall 56.1% | 46.7% | 93.0%

Input. | (None, 200, 128)
Dropout
Output: (None, 200, 128)
\ Input: | (None, 200, 128)
LSTM 2.50
‘ Output: (None, 128) -

Figure 4 - Training Loss for Each Model

E 2.00 ==DNN
o0 ==CNN
Input: None, 128 E£150
Dropout P () = ==RNN
Output: (None, 128) £1.00
&1
0.50
‘ Input: (None, 128) [.
Dense Classifier 0.00
‘ Output: (None, 6) - =
0 10 20 30 40 50

Epochs

Results and Discussion

After training, it was found that the most successful model when it came to both recall and
accuracy on the training and test sets was the LSTM RNN. The results indicate that the
models did not see the problem of over-fitting as test and training set accuracy was
comparable. This result was expected as RNNs have proven successful in a wide range of
natural language processing tasks. One feature of the RNN used was that the words in the
data set which do not appear in the GloVe vectors have been mathematically represented
using the unk token. Such a representation coupled with a LSTM model likely captures the
contextual meaning better than character level n-gram models. It is of note that the results
were extremely sensitive to the weight factor in the weighted cross entropy loss function and
the threshold for converting probabilities into binary classification.

Future Steps

To improve upon the results further, future model iterations would include training a Bi-
directional LSTM RNN. A dictionary of all worlds in the dataset would be trained as
opposed to just using the pre-trained GloVe embeddings in order to allow the model to better
detect which words and phrases are common to abuse comments. Additionally, sentiment
lexicon features, count of special characters(hashtags), number of characters/words/syllables
features may be used along with word2vec embedding to capture context [2],

References

[1] Kircher@4evrmalone, M. M. (2018, May 15). Twitter to Start Hiding Bad Tweets. Retrieved from https://nymag.com/selectall/
2018/05/twitter-to-start-hiding-badtweets

[2] Davidson, Thomas & Warmsley, Dana & Macy, Michael & Weber, Ingmar. (2017). Automated Hate Speech Detection and the Problem
of Offensive Language.

