
A model for the prediction of influent water flows from
wastewater treatment plants

Abhishek Krishnan
Civil & Environmental Engineering

abhikr@stanford.edu

Jorge Luis Meraz
Civil & Environmental Engineering

jmeraz@stanford.edu

Abstract
In this project we explore three distinct methods to predict wastewater treatment plant influent flows. Using
our time series data, we develop two LSTM model architectures that use climate data to predict future
water flows at varying time scales between 1 and 1000 hours. In addition, we develop a gradient boosting
technique to compare against the performance of our deep learning models. We use the root mean squared
error (RMSE) as the metric that our models attempt to minimize, in addition to using it as an overall
measure of each model's performance. Our LSTM models each predict influent flows on an hourly scale
and perform quite well, relative to the gradient boosting technique, having the lowest overall RMSE scores.
The two distinct LSTMs differ in their architecture (e.g., model layers, hyperparameter tuning, predictive
features), highlighting the various learning abilities of LSTMs in recognizing patterns in data.

1. Introduction
Increasing global populations have led to greater need and use for critical natural resources such as water. As
water supplies decrease, replenishing depleted sources increasingly relies on wastewater treatment plants
(WWTPs). WWTPs ensure that water is sufficiently treated before it is released back into the environment,
decreasing the risks of adverse environmental pollution. Effectively treating water to adequate standards
relies heavily on understanding how much water will be flowing through the plant during a given day. Being
able to forecast influent water flows can optimize operational characteristics of the treatment plant to save
time, energy, and capital. Here, we develop a series of simple regressive and deep learning approaches that
utilize climate data to predict influent flows at time scales between 1 and 1000 hours. Specifically, we
develop a gradient boosting model (XGBoost) and two distinct LSTM frameworks that predict influent flows
using climate data (e.g., temperature, precipitation, humidity). The LSTM models that this project utilizes
were initially developed to predict energy usage and traffic volume. We train these models on multiple
weather parameters and use it to predict the influent flow. After initial model evaluation, the models are
modified in order to better fit the dataset that we use by changing the hyperparameters, including the model
architecture itself. Using these models we are able to predict influent flow at a much smaller temporal
resolution of the forecast: no other existing model forecasts influent flow at an hourly scale. Having the
ability to forecast far into the future is crucial because various processes carried out in wastewater treatment
plants as well as decision making relies on being able to know the value of influent flow in advance.

2. Related work
Traditional approaches to forecast influent water flows use a combination of physical and autoregressive
models [1], [2]. While these have proven useful, they are unable to capture the complex nature of aging
infrastructure or climate impacts [1], [2]. To gain better understanding of these complex relationships,
data-driven models have been increasingly applied to forecasting water influent flows. Previous studies have
implemented deep learning architectures, particularly recurrent neural networks (RNNs), to forecast key
WWTP characteristics such as influent temperature, influent biochemical oxygen demand, and influent flow
[2]–[4]. Fernandez et al. 2009 implemented a FNN using two input variables (day of the week and average
daily flow-rate), and was able to forecast flows up to one month with average errors below 10%. Oliveira et
al. 2020 used LSTMs and CNNs to understand the relationship between influent flow and various climate
features, such as humidity and precipitation [3]. In this work, LSTMs and 1-D CNNs were compared relative
to their ability to forecast influent flows on a daily scale. The best candidate model was the LSTM, which had
the ability to forecast flows three days out with an overall error of 200 [m3]. Inspired by the work of Oliveira
et al. 2020, we focus our efforts on building a deep learning LSTM model to predict influent water flows
using climate data. For our model, we use three input climate features – temperature, precipitation, and
humidity – to predict influent flows. Our end goal is to get a deeper appreciation of the predictive power of
RNNs by comparing the performance of various LSTM architectures to that of multivariate techniques.



3. Dataset and Features
We used two time-series datasets for this project. Wastewater treatment plant data was obtained from Silicon
Valley Clean Water, a wastewater treatment plant in Redwood City, California that serves a number of cities
in San Mateo County. The full dataset contains 33 features collected in time intervals of 15 mins. From this
feature set we isolated influent wastewater flows, reported in millions of gallons, aggregating them into their
respective hourly sums. Climate data was obtained from Visual Crossing API. This dataset contains 22
distinct weather conditions collected on hourly intervals. In this dataset we isolated temperature, humidity,
and precipitation. Temperature, humidity, and precipitation are reported in celsius, percentage, and
millimeters, respectively. Both time series datasets were structured similarly and merged into a single
dataframe for subsequent analyses. The following table and figure show an overview of the time series
characteristics of our data, as well as summarizes basic statistics of each dataset feature.

Table 1. Baseline statistics of feature dataset

Feature Mean Std. Dev Min/Max

Influent Flow (MGD) 53 24.5 0/280

Temperature (C) 15 4.4 0/39.5

Precipitation (mm) 0.04 0.3 0/13.4

Humidity (%) 69 15 0/134

Figure 1. Time Series dataset

The dataset was fairly comprehensive, but also has some limitations that are likely to have affected the
performance of the model used. For one, there were small but notable clusters of continuous data points with
negative or null values for the influent flow due to recording errors. For consistency’s sake, those values were
replaced with zeroes, which could impact the accuracy of the training of the model and the validation.
Additionally, the number of data points was around 30,000, which is a large enough sample to capture the
diurnal nature of wastewater flow, with it peaking in the morning and in the evening. However, for training
purposes, with the values of input features such as temperature and precipitation likely being the same on
multiple days, this is another potential source of error. This is particularly pronounced for precipitation,
where there are several days with zero values.

4. Methods

Baseline
A LSTM model architecture was implemented as the baseline method to predict influent wastewater flows.
To carry out this baseline method, the dataset, including all features, was transformed into a multidimensional
matrix array with a time lag=1 for each feature. The new, transformed dataset includes 4 time lag variables
and 1 independent variable at time=t. For training, all array values are initially scaled to values between 0 and



1. For the training data, 1 full year of data is used, while the remaining data is allocated to the test set. For the
baseline model, a sequential LSTM model is constructed with 3 layers – a LSTM layer with 100 neurons, a
dropout layer of 20%, and a dense layer. The loss function used for our model was the mean squared error
(MSE), with Adam chosen as the model specific optimizer. MSE and Adam were used as they seem to be the
standard for time series specific models using an LSTM architecture [5], [6]. Model results, including loss
function performance and predictive capability, can be found in the subsequent Results section. In addition to
the LSTM, we evaluate the predictive capability of a gradient boosting technique, XGBoost. A brief
discussion and model results from the XGBoost analysis can be found in the Appendix.

Novel method and hyperparameter tuning
The novel LSTM model used is a fairly simple LSTM based upon a previously implemented model for
predicting metro traffic [7]. The model architecture consists of an LSTM layer, followed by dropout, and
ending with a dense output layer. The model aims to forecast the influent flow 1000 hours in advance, as
compared to the baseline model which forecasts the flow 1 hour ahead of time. However, unlike the baseline
model, the influent flow itself is not used as a feature. Table 2 below contains the default hyperparameters
used while training the model. The hyperparameters chosen were similar to those chosen for the baseline
model, for the same reasons mentioned in the previous section.

Table 2. Hyperparameter overview

Hyperparameter Value

Number of neurons 100

Batch size 128

Dropout probability 128

Loss function Mean squared error

Optimizer Adam

Number of epochs 150

Steps per epoch 100

5. Results and Discussion

Overall model performance
In Table 3 we highlight each model's performance as evaluated by the RMSE. The baseline LSTM model
outperforms the XGBoost and higher order LSTM models by ~60% and ~40%, respectively.

Table 3. Model performance overview

Model RMSE

Baseline LSTM (Best) 9.70

XGBoost (see Appendix) 23.95

Higher Order LSTM (pre-tuning) 16.62

The higher performance of the baseline LSTM model can be attributed to the use of a time lagged influent
flow parameter as a feature, in addition to the time lagged climate variables. The XGBoost and higher order
LSTM model do not make use of time lagged or influent flow variables as features. As a result of this, the
models tend to exhibit lower performance, but may be more generalizable. Moreover, given larger climate
datasets, RMSE for XGBoost and the higher order LSTM have the potential to converge to a value closer to
that of the baseline model.

Hyperparameter tuning
The results of the hyperparameter tuning exercise conducted on the higher-order LSTM are shown below in



Table 4. The best configuration has been highlighted. From the tuning procedure carried out, the important
takeaways were that the model performed better with lower dropout probability, higher batch size, with mean
absolute error as the loss function, and with the optimizer being Adam.

Table 4. Results of hyperparameter tuning

Hyperparameter values Metrics

Number
of
neurons

Dropout
probability

Batch
size

Loss
function

Optimizer Mean
Absolute
Error
(MAE)

Root
Mean
Squared
Error
(RMSE)

R2

100 0.2 128 MSE Adam 13.65 16.62 0.0733

50 0.2 128 MSE Adam 18.63 21.96 -0.638

200 0.2 128 MSE Adam 20.936 25.62 -1.227

100 0.5 128 MSE Adam 16.74 19.90 -0.344

100 0.2 128 MAE Adam 13.58 16.59 0.065

100 0.2 256 MAE Adam 12.84 15.49 0.186

100 0.2 256 MAE RMSprop 13.32 15.92 0.137

100 0.2 256 MAE Adadelta 23.35 28.92 -1.840

100 0.2 256 MAE SGD 15.09 20.10 -0.372

LSTM models
The following figures highlight the performance of the baseline and higher order LSTM models. Figures 3-6
illustrate the predictive capability of forecasting future influent water flows at the 1 hour (baseline) and 1000
hour (higher order LSTM) marks. Essentially, the goal is to see how far in advance we could predict
wastewater flows, given only climate data features, and with minimal loss of model performance. The
baseline model performs quite well, which is expected, given that it uses a time lagged variable of influent
flow as a predictive feature. While this showcases the predictive power of LSTMs, we are interested in
modifying our LSTM model architecture to predict beyond the 1 hour mark and with features other than
influent flow.

Figure 2. Baseline LSTM loss Figure 3. Baseline LSTM predictive output
(time lag period=1)



Figure 4. Tuned novel LSTM loss
Figure 5. Tuned novel LSTM predictive output

(horizon = 1000 hours)

The goal of the novel LSTM was much more ambitious than that of the baseline LSTM, but it still performed
relatively well. The training and validation loss were relatively well aligned. The diurnal nature of the
wastewater flow (peaks at two times in the day) was captured pretty well, and the model was somewhat
sensitive to sharp changes in weather conditions. However, even with layer normalization and dropout
regularization implemented, it was clear that there is a degree of overfitting occurring. Tuning was able to
improve the model’s performance, but the overshooting of the values persisted. This was especially
noticeable when the validation set had high variability.

6. Conclusion/Future Work

The performance of the higher order LSTM model was relatively good when the test set influent flow values
were relatively similar to the training data, and the model was able to capture the diurnal nature of the
influent flow time series. However, the model’s performance was hampered by the overfitting to the small
dataset. To reduce it, future iterations of the model would benefit from use of different kinds of
regularization, such as L1 or L2 regularization, to supplement the dropout. Procuring a larger dataset with
less variability and less anomalies would also help.

We would also attempt to carry out hyperparameter tuning using a more systematic algorithm, such as grid or
randomized search. Moreover, rather than representing precipitation as a discrete variable, it can be
represented as a masked variable indicating whether precipitation was present or not. This masking could
potentially increase the generalizability of our model, in addition to increasing model performance. Lastly,
the possibility of using other time-series input variables apart from the weather data would be considered,
with the aim of improving performance even further.

7. Contributions
AK contributed to the project code and write-up. JLM contributed to the project code and write-up.



References
[1] Q. Zhang, Z. Li, S. Snowling, A. Siam, and W. El-Dakhakhni, “Predictive models for wastewater flow forecasting
based on time series analysis and artificial neural network,” Water Sci. Technol., vol. 80, no. 2, pp. 243–253, Jul. 2019.

[2] T. Cheng, F. Harrou, F. Kadri, Y. Sun, and T. Leiknes, “Forecasting of Wastewater Treatment Plant Key Features
Using Deep Learning-Based Models: A Case Study,” IEEE Access, vol. 8. pp. 184475–184485, 2020. doi:
10.1109/access.2020.3030820.

[3] P. Oliveira, B. Fernandes, F. Aguiar, M. A. Pereira, C. Analide, and P. Novais, “A Deep Learning Approach to
Forecast the Influent Flow in Wastewater Treatment Plants,” in Intelligent Data Engineering and Automated Learning –
IDEAL 2020, 2020, pp. 362–373.

[4] F. J. Fernandez, A. Seco, J. Ferrer, and M. A. Rodrigo, “Use of neurofuzzy networks to improve wastewater
flow-rate forecasting,” Environmental Modelling & Software, vol. 24, no. 6, pp. 686–693, Jun. 2009.

[5] B. B. Sahoo, R. Jha, A. Singh, and D. Kumar, “Long short-term memory (LSTM) recurrent neural network for
low-flow hydrological time series forecasting,” Acta Geophys., vol. 67, no. 5, pp. 1471–1481, Oct. 2019.

[6] Z. Chang, Y. Zhang, and W. Chen, “Effective Adam-Optimized LSTM Neural Network for Electricity Price
Forecasting,” in 2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), Nov.
2018, pp. 245–248.

[7] B. V. Vishwas and A. Patel, “Hands on time series analysis with Python,” GitHub, 2020.
https://github.com/Apress/hands-on-time-series-analylsis-python#apress-source-code (accessed 2022).



Appendix

The XGBoost method uses our merged data, without any lags, and is built using ~2 years of data for our
training dataset. Similar to the baseline neural network model, RMSE is used as our metric to evaluate how
well the model performs (See Table 3 in main text). XGBoost can be implemented with a number of
hyperparameters, but for the purposes of this work, we are primarily interested in evaluating how well the
model performs relative to the LSTM networks, without intensive hyperparameter tuning. The XGBoost
model is built using 5000 sequential trees, as this was found to be the number of estimators that minimized
the loss function.

Figure 1. XGBoost loss Figure 2. XGBoost predictive output


