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Abstract

Large-eddy simulations (LES) can provide accurate predictions but their
computational cost is prohibitively high for engineering use when wind
loading at multiple wind directions need to be evaluated. This study
explores a multi-fidelity neural network that combines the computational
efficient, low-resolution LES, for a large number of wind directions, with the
more expensive, high-resolution LES, for a subset of wind directions. The
goal is to predict the the mean, root-mean-square, peak-min and peak-max
pressure coefficient at wind directions where high-fidelity LES data is not
available, at a reduced computational cost. The training set includes 7 wind
directions and the test set the 3 intermediate wind directions. The results
show that the multi-fidelity neural network provide accurate predictions for
all the quantities of interest (QoIs) except for the root-mean-square (rms)
pressure coefficients (Cp)

1 Introduction

Figure 1: Goal is to reconstruct
the green curve at each point on
the building surface with features
from the orange and blue data-
points.

Computational Fluid Dynamics (CFD) can play a major
role in estimating wind loading over high-rise buildings
[1]. However, to enable its routine use for building design
a significant computational speed-up is required. To do
so, we aim at combining data from cheap, Low Fidelity
(LF) Large-Eddy Simulations (LES) with data from ex-
pensive, High Fidelity (HF) LES in a Multi-Fidelity (MF)
framework to predict wind loading on the facade of a
high-rise buildings for the full wind rose. In particular,
we will combine LF data computed at many wind direc-
tions with HF data computed at few wind directions to
provide wind loading predictions for the full wind rose
with accuracy close to the HF model at a fraction of its
cost (i.e. 30% to 70% cost reduction). We will consider
the case of the high-rise building in Figure 2a with an
incoming atmospheric boundary layer (ABL). The QoIs
will be the mean, rms, peak-min and peak-max pressure
coefficient on the building facade. Figure 1 sums up the
proposed framework.

Code is available upon request at: https://github.com/mattiafc/HRBMachineLearning.git ,

https://github.com/mattiafc/HRBMachineLearning.git


2 Related work

The novelty of this work is that it is the first time ever that mean, peak-min and peak-max
Cp are predicted through Neural Networks (NN) in a MF framework. Almost no literature
on MF modeling for wind loading predictions is available, as there is only one published work
on the matter [2] and two currently under review [3], [4]. In [2], the author uses HF data at
5 wind directions and LF data at 10 wind directions to predict the HF model response at
the 5 wind directions at which HF data is not available. The LF model adopted is Reynolds
Averaged Navier-Stokes simulations while the HF model adopted is LES. The author uses
NN to correct the LF model response for therms Cp.

3 Dataset and Features

The raw dataset consists in pressure and velocity time series for 80s at 1449 building building
points from numerical simulations (see Figure 2b). The dataset features data at 10 different
wind directions θ (see Figure 2a) and 2 different LES resolutions, name the Coarsest (CC),
Coarse (C) simulations. Thus, there are a total of 1449 · 10 = 14490 datapoints per LES
resolution. We will refer to the Coarsest LES as the LF model and the Coarse LES as the HF
model. To train the model, LES data is post-processed to extract Galilean invariant features
to help and boost the NN accuracy and facilitates its training [5]. If Galilean invariant
features are not used and the model is evaluated on identical flows but different frame of
reference, the NN would yield different predictions. Thus, the use of Galilean invariant
features allow the NN to naturally embed symmetry properties of the problem of interest
(e.g. θ = 0◦ and θ = 180◦ NN predictions should yield the same results). The features
selected for this study are the following:
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Here, (̃.) and (.) denotes adimensional and time averaged quantities, respectively. P , ρ, k
denotes the pressure, air density, and turbulent kinetic energy on the building surface, and
the ABL velocity at roof height, while UH , u∗, y0 ,and y represent the ABL velocity at roof
height, the friction speed, the roughness length, and the vertical coordinate. This implies
that Uin is a function of height, y (Uin(y)). For what concerns the other quantities, τw

is the wall stress on the building surface, Atap is the tributary area of each tap and n̂ its
normal, A is the building surface, and θ the wind direction. Finally, Cp denotes the pressure
coefficient and the subscript peak,Max and peak,min denotes the maximum and minimum
peak coefficients, respectively. These peak values are computed by using the method in [6].

(a) High-rise building
schematic.

(b) Taps distribution on the
building surface.
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4 Methods

Our aim is to train a NN that is able to correct the LF model predictions at
the wind directions for which we don’t have HF data, and provide at those wind
directions wind loading predictions with HF accuracy. Thus, we want our NN
predictions to be more accurate than the LF model predictions. The QoIs for
our learning task are the mean, rms, peak-max, and peak-min Cp of the HF
model. This work uses data from LF simulations at 10 wind directions and HF simulations
at 7 wind directions to predict HF responses at the other 3 wind direction (HF data withheld
from training). Two different neural network architectures have been built from scratch
and explored: (1) A single neural network for each QoI, and (2) a neural network with
shared layers that branches out into four branches (one for each QoI). The shared layers
improve the accuracy of the neural network and thus, the results of this architecture are
presented in this report. We further explored two possible approaches by assuming that the
QoIs are correlated: (1) End-to-end learning task where we predict directly the HF response
directly, and (2) predict the discrepancy, ∆Cp, between LF and HF (intermediate step),
and then correct the predictions by adding it to the LF data (CHF

p = CLF
p + ∆Cp). The

learning task of the first approach uses only LF data as features and HF data (of the same
features) as labels. The second approach uses both LF and HF features and the labels are the
discrepancies between LF and HF features. The latter approach outperforms the end-to-end
learning task, and thus only results of approach (2) will be presented.We hypothesize that
this is the case because approach (2) leverages more data. A graphical representation of the
neural network is given in Fig. 3

Figure 3: Implemented neural network architecture

The first step in setting up our neural network is to identify the 7 wind directions at
which HF data is available (Θ) and the 3 wind directions at which we want to predict
HF responses (ΘC). As of now, we are using equispaced wind directions, meaning Θ =
{0◦; 10◦; 30◦; 40◦; 60◦; 70◦; 90◦} and ΘC = {20◦; 50◦; 80◦}. Figure 4 shows of how data is
used in our neural network. The train-dev split is 80/20, while the test set is ΘC . To make
predictions we use features from the LF model evaluated at ΘC as input for our neural net,
and then compare its predictions against the label from HF data evaluated at ΘC .
Since we aim at predicting the wind load over the building, the root-mean-square error
(RMSE) is the correct choice as both loss function and evaluation metric. However, since the
pressure tap distribution on the building is uneven, their tributary area is different. Thus,
taps with larger tributary area will contribute more to the RMSE than taps with a small
tributary area. To account for this, we used a discretized version of the integral RMSE. In
addition, since we used mini-batch gradient descent, and each batch contributes differently to
the building RMSE, we normalized the RMSE by the LF error over the batch. This results
in the following loss:
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Figure 4: Data split for the neural network.

Here NN denotes the neural network predictions (output), while HF denotes the HF model
predictions (label), and i denotes one of the 4 Cp of interest. We performed random grid
search considering learning rate ∈ [10−2.5; 10−5], number shared hidden layers ∈ [1, 4], number
of neuron per shared layer ∈ [2, 16], number of hidden individual layers ∈ [1, 3], and batch
size ∈ [26, 28]. To simplify the problem, we used the same architecture for all the individual
hidden layers. We used tanh activation function for every neuron except for the output layer,
where we use a single neuron with no activation.

5 Results & Discussion

The best neural network setup is a batch size of 32 examples, a learning rate of 0.00059, a
neuron distribution for the hidden shared layers of [12, 8, 14, 6, 3] neurons and a hidden
layer with 4 neurons with one output neuron with no activation for each hidden individual
layers. The network was trained for 550 epochs. Table 1 shows the comparison between the
RMSE of the NN train, NN test, NN train&test, and LF predictions error with respect to
the HF response for every wind directions in Θ for the NN found through grid search with
the smallest train&test RMSE. To avoid variance problems we used early stopping.

Cmean
p Crms

p Cpeak,max
p Cpeak,min

p

RMSE NN Train set 0.0392 0.0214 0.0422 0.0949
RMSE LF Train set 0.0563 0.0194 0.0812 0.135
RMSE NN Dev set 0.0385 0.0212 0.0419 0.096
RMSE LF Dev set 0.0562 0.0189 0.0815 0.132
RMSE NN Test set 0.0260 0.0151 0.0283 0.065
RMSE LF test set 0.0376 0.0137 0.0571 0.093

Table 1: Root mean square error of the NN and the LF model with respect to HF predictions.

The results show that the NN is able to improve the LF model response for every QoI
except for the rms Cp, which needs to be further investigated. To make a more meaningfull
comparison of the LF and the NN model predictions we can define the metric

∆m
i =

|Cm
p,i − CHF

p,i |
sign(|Cm

p,i| − |CHF
p,i |)

(3)

where m indicates either the LF or the NN data and i the relative Cp. The model overpredicts
HF data in terms of magnitude when ∆m is positive while it undepredicts HF data when
∆m is negative. Figure 5 shows the plot of the probability density function of ∆ for both
the LF and the NN predictions. Most of the ∆ histograms show that the error of the NN
is within reasonable margin of the HF predictions. These margins are ±0.1 for the mean
Cp, ±0.05 for the rms Cp and ±0.2 for the two peaks Cp. It is also possible to see that the
NN outperforms the LF model predictions, as its distribution of ∆ is much narrower than
the one of the LF model. The only exception is the pdf of ∆ for the rms Cp predictions is
skewed toward positive values for the NN while centered on 0 for the LF model. To make
the comparison between the LF and the NN predictions more quantitative, we can compute
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(a) ∆ occurrence for the NN predictions.

(b) ∆ occurrence for the LF predictions

Figure 5: Occurence of ∆ for the Neural network and the Low fidelity model predictions.
The dashed black line represents the limit for which predictions are considered accurate. The
percentages show the area of the pdf within the given limits. The percentage in the figures
represent the fraction of the surface of the building over which the QoI is predicted with
reasonable accuracy

the percentage of the building surface over which Cp predictions are within the reasonable
interval defined before. The area is reported on the single ∆ histograms.

6 Conclusions & Future Work

The present work evaluate the use of a Neural Network Multi-Fidelity framework to predict
mean, rms, peak-max and peak-min Cp on the surface of a high-rise building for multiple
wind directions. The Neural Network leverages the correlation between LF and HF model
responses to correct the LF predictions and provide wind loading predictions with improved
accuracy. The results clearly shows that the framework considered in this report is able to
predict mean, peak max and peak min pressure coefficients on the high-rise building surface
with accuracy close to that of HF data. In fact, the Neural Network provides satisfactory
predictions over more than 96% of the building area for every QoI, while the LF model only
do so for 90% of the building surface. The cost reduction of the wind loading evaluation
provided by this framework is 30%, as HF data from only 7 out of 10 wind direction was
used during training.
There are multiple paths we are considering going forward. First is to add a regularization
term to the loss rather than using early stopping. Second, we want to explore meta-heuristic
optimization algorithms such as Differential Evolution [7] to make the hyperparameters more
methodical. We will also consider clustering points over the feature space and fit one neural
network for each cluster to make it the task of predicting CHF

p less end to end.

7 Contributions

Mattia Ciarlatani: Conceptualization, Methodology, LES run, Feature design, Coding,
Post-processing.
Themistoklis Vargiemezis: Conceptualization, Methodology, Coding, Post-processing.
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