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1 Introduction

RNA secondary structure prediction is currently one of the main challenges facing RNA structural
biologists. A better understanding of RNA folding rules, or creating a structure prediction model,
is needed to discover how RNA function is determined by its folding. A better structure prediction
model could help in many downstream tasks, such as the designing of RNA-targeting drugs. The
classical free-energy minimization approach presents limits, especially regarding complex structures
such as pseudo-knots or long sequences (>200 nucleotides (nt)). [8]. Furthermore, current RNA
datasets are limited in size and prone to over-fitting. To tackle the problem of RNA structural
prediction with limited data, we propose using the Bidirectional Encoder Representations from
Transformers, or BERT, model [5] to accomplish secondary structure prediction. First, we pretrained
our model, RNABERT, with primary RNA sequences. Then we finetuned the RNABERT with a
family classification task to understand the performance of pretrained network. We compared this
task to a non-pretrained RNABERT and simpler bidirectional-LSTM (BILSTM).

2 Related Work

Our work resembles the works of DNABERT [6] and E2Efold [4]. We pretrained BERT similar to
how DNABERT was pretrained [6], but with RNA sequences from the Rfam database [7]. Similar to
[2], we worked with Rfam families of RNA sequences. While we worked on directly classifying Rfam
families, [2] worked on RNA family clustering. They used a similarity measure between two RNA
sequences with respect to soft symmetric alignment [3] to measure the quality of the embeddings. We
also worked on Rfam family classification to measure the effectiveness of the RNABERT embeddings
in other downstream tasks while using accuracy and F1 score as a metric.

3 Code

Codebase is available at https://github.com/dhesin/RNABERT-2. We
have used example repositories from HuggingFace, namely
https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling.
We have modified the code to download our datasets and train a custom model from scratch since the
example code uses models and datasets at the HuggingFace hub. Additionally, we created a tokenizer
module for RNA sequences and finetuning code.

,



4 Dataset and Features

We have downloaded sequences from 29 noncoding RNA (ncRNA) families from RFam database [7]
2 mRNA families from virus and Humans for a total of 31 RNA families. For pretaining we selected
sequences with lengths less than 400 basepairs (bp) to train 1-mer sequences. Later, we used 410K
sequences for pretaining of 6-mer sequences across all 31 families. Preprocessing of the data included
removing edges of sequences with non-canonical bases (A,C,U,G) on the edges of the sequences and
removing sequences that were comprised of more than 1% non-canonical bases. We then selected for
sequences of lengths <= 512 as this the size of input for RNABERT. Sequences were not truncated
or concatenated to avoid our models from learning human-made modifications. We used 3% of
them for evaluation during pretraining. Sequences were preprocessd by splitting them into k-mers
(1-mer and 6-mer for pre-training task and 6-mer for non pre-training and BILSTM benchmarks).
Sequences were then one-hot encoded. The vocabulary size for these sequences is 8277, including
special tokens for padding, masking, classification, separator, and unknown. Although there are only
4 nucleotides that make up sequence bases, namely C, A, G, and U, there are sometimes uncertainties
in the sequences, and they are represented with additional characters [1] Data was split keeping ratios
of number of sequences per family intact.

Figure 1: Number of sequences per RNA family

5 Methods

We experimented with 2 methods;

• Pretraining a BERT model with primary sequences, then classifying RNA families with
features from BERT

• Training LSTM network with primary sequences to classify RNA families

5.1 RNABERT

We have pre-trained BERT network with 6-mer sequences with 18% and 33% masking. We have used
6 hidden layers instead of 12 while keeping the other BERT parameters, like hidden and intermediate
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(a) Pretraining with 18% masking (b) Pretraining with 33% masking

(c) Finetuning with pretraining - 18% mask (d) Finetuning without pretraining

(e) Finetuning with pretraining - 33% mask

(f) Training statistics for BILSTM
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sizes, the same. During pre-training, tokens are selected to be masked initially. Then these selected
tokens and the following 5 tokens are also masked to avoid the network from peaking into masked
tokens through the following 6-mer for 18% masking. For 33% masking previous 5 6-mer and
following 5 6-mer are masked. This approach is also used in [6]. To implement consecutive masking,
we have implemented a custom data collator, which takes care of collating sequences into batches
and masking them.

After pre-training, we finetuned BERT with classification head on top for family classifica-
tion of 31 RNA families. Figure2c shows how training, validation loss, and family prediction
accuracy evolve over 20 epochs.

We also trained a BERT network with a classification head on top without pre-training to
classify 31 RNA families and compare classification results with the pre-trianed network. Figure 2d
shows how training, validation loss, and family prediction accuracy evolve over 20 epochs.

5.2 LSTM

We trained a BILSTM using 6-mer, one-hot encoded sequences. The model included an embedding
layer, one bidrectional-LSTM unit, two dense layers one with ReLU activation and a softmax output
layer. This model was trained for 10 epochs. Evaluation through training can be seen in figure 1f.

5.3 Training Dataset Size

We wanted to also look at the robustness of the pre-trained network in comparison to our benchmarks.
To achieve this we created 5 datasets (1 and 1/16 the size of the original dataset) that contained
the same distributions of number of sequences per class to test how training-set size impacted our
predicitions.

5.4 Controlling Sequence Length Distributions

To understand the effect of the sequence lengths in our classification tasks, we have created multiple
datasets with sequence lengths within the specified range. There were 5 sets, each with sequence
lengths between 25-75, 75-125, 125-175, 175-225, and 225-275.

New datasets are more unbalanced with the number of sequences representing each family (supple-
mental figures 5-9)

6 Experiments/Results/Discussion

6.1 RNABERT

Each epoch of pretraining takes 55 minutes with 2 RTX3090 GPU; therefore, it was impractical
to experiment with different masking ratios, learning rates, k-mers, etc. We pretrained with 1-mer,
6-mer sequences. We also pretrained 6-mer with 6 and 11 consecutive token masking totaling 18%
and 33% masking, respectively (masking is set to 3% but with repetition, effective masking increases).
Figure2a and 2b show how training, validation loss, and MLM accuracy evolve for 18% and 33%
masking.

With 1-mer pretraining and finetuning, we got an accuracy of 0.67 on the classification task. With
6-mer, our accuracy increased to 0.70 (both 18% masking). We also finetuned after 33% masking,
and accuracy was again 0.70. Pretraining through auxiliary tasks without labeled data enables using a
limited amount of labeled data for supervised training during finetuning. To test if this holds for our
6-mer pretrained network, we created another dataset with 6% of the original. Accuracy only dropped
to 0.67. Note that these results are for train/validation/test sets that include sequence lengths 25 to 512.

Accuracy %
25-75 92

75-125 86
125-175 87
175-225 91
225-275 95

Table 1: Accuracy for differ-
ent sequence length bins

Finetuning for family classification tasks with (18% masking)
and without pretraining results were surprising. They achieved
similar accuracy around the same epochs. The only difference
for pretrained network was that it took more epochs for the
network to start overfitting compared to the network without
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pretraining. This result could be explained in several ways.
1. The network might be learning sequence length differences
between families. 2. 6 consecutive masking was not enough
for 6-mer sequences that the network was peeking into sur-
rounding tokens to guess the masked ones.3. 0.18 masking was
not enough bottleneck for the BERT to learn useful representa-
tions.

To test if the model was learning sequence length we checked across 5different length dis-
tributions as outlined in our methods. Table 2 shows the weighted accuracy within each dataset. The
accuracy and F1 results improved across the high and low-represented families. The results are
also mixed since some families with high/low representation also got low F1 and accuracy scores.
Appendix figures 5 through 9 show more details about the results on these datasets.

Accuracy results with 18% and 33% masks were also similar, although pretraining plots
are quite different. Pretraining plots with 33% mask show that it is harder for BERT to learn
representations and predict masked tokens. But finetuning stage was able to obtain same accuracy
results which may suggest that network is tuning into sequence lengths for classification rather than
other features.

6.2 LSTM

Accuracy %
25-75 0.85

75-125 0.84
125-175 0.89
175-225 0.92
225-275 0.93

Table 2: Accuracy for differ-
ent sequence length bins us-
ing BILSTM

The performance of the LSTM, after training across 10 epochs,
achieved an accuracy of 70%. Looking at further breakdown per
family we noticed that accuracy was uneven across families. Testing
using the training set that was 6% the size of the original yielded an
accuracy reduction to 64% for the LSTM.

To test if the model was learning sequence length we checked across
the data sets with differing length distributions as outlined in our
methods. Table 2 shows the weighted accuracy within each data
set. The accuracy and F1 results improved in families with many
sequences in that length distribution (supplementary 6-10). The results
showed that some families with minimal sequences per family in that
length category also achieved high F1 score and accuracy.

7 Conclusion/Future Work

Overall results show that RNABERT pretrained with 18% masking has some advantages over the
LSTM but not as much as expected. RNABERT has a 1-2 point accuracy advantage on the full set of
sequence lengths between 25 and 512 and has a 3-4 point higher accuracy on the 6% of the full set.
The results are very similar for RNABERT pretrained with 33% masking. Accuracy on datasets with
more uniform sequence lengths are much higher but with mixed results across since RNA families
with large and small number of sequences. This suggests that that both models can learn family
idenities well with even length distribution but the current BERT model still has limited advantage
Future work may include experimenting with a larger RNABERT model to see if low-performing
classes would improve. Additionally, analyzing attention maps would help to understand what
RNABERT is looking into for each family. The final goal of our project was to predict the secondary
structure of the RNA sequences. Due to unexpected results in Rfam family classification, we took
time for a more detailed analysis of the classification task. Therefore other future work includes
secondary structure prediction.

8 Contributions

Esin downloaded the pre-training dataset, built the RNABERT pretraining/finetuning model, and
experimented with it. Colin constructed all curated datasets and built the BILSTM model and
experimented with it.
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9 APPENDIX

Figure 3: Results from LSTM on test data
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(a) All Sequences of 25 Rfam Family (b) Sequences with length < 400 of 25 Rfam Family

Figure 4: Sequence Length Distribution for each of 25 Rfam family

Figure 5: Results for sequence of length > 25 and < 75
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Figure 6: Results for sequence of length > 75 and < 125

Figure 7: Results for sequence of length > 125 and < 175
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Figure 8: Results for sequence of length > 175 and < 225

Figure 9: Results for sequence of length > 225 and < 275
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