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Abstract 

 Recent advancement in human pose estimation 

algorithms like the OpenPose have enabled 

quantification of kinematics and dynamics of human 
movement from videos. We implemented an attention 

based bidirectional LSTM model to predict a 
comprehensive set of human anatomical markers 

from a limited set of markers generated by pose 

estimation algorithms. We investigated the effects of 
attention mechanisms and different hyperparameter 

choices on the performance of our model.  
 

1. Introduction 

This project is part of the pipeline of OpenCap, a 

software to quantify kinematics and dynamics of 

human movement from smartphone videos. One step 

of this process is to use a reduced set of body markers 

identified from videos, usually through pose 

estimation models such as OpenPose [7], to predict a 

comprehensive set of anatomical markers. This 

comprehensive set is needed for accurate 

musculoskeletal simulations. Currently, the OpenCap 

research group uses the LSTM model for this task. Dr. 

Antoine Falisse who led the OpenCap research is the 

mentor of our project. The goal and challenge for our 

project is to explore other model architectures that can 

be added to improve the accuracy of this model. 

 

The input to our algorithm is a series of body 

movements represented by 3D coordinates of reduced 

body markers. The original data is in trc format, 

which can be read by OpenSim, a software that can 

visualize musculoskeletal movements. The data is 

pre-processed by Dr. Falisse and is transformed from 

trc files to numpy arrays. We then use a LSTM model 

and output a more complete set of anatomical body 

markers of the same movement series, still in the form 

of numpy arrays.  

 

2. Related work 

 

To better understand the problem, we did some 

literature review regarding human position deep 

learning and attention models. While LSTM is the 

commonly used structure for this type of problem, 

many researchers proposed adding attention features 

to make the model better suited for the nature of 

human position. Besides the basic attention model, the 

spatial-temporal one seems to be a popular adaptation 

[1][8][9]. Other options include applying GRU with 

LSTM or using GNN [3][4]. After evaluation, we 

think the spatial-temporal attention structure could be 

useful for our project.  

 

One approach from the paper by S. Song et. al. [1] 

use a local attention model, with spatial attention for 

joint selection gate and temporal attention for 

frame-selection gate. The architecture has a spatial 

attention layer, followed by LSTM layers, and then 

combined with a temporal attention layer. However, 

this problem is looking at human action recognition, 

which is a many-to-one model, different from our 

many-to-many output.  

 

Another approach is a global attention model for 

spatial information and accumulative learning curve 

model for temporal information, proposed by Y. Han 

et. al. [8]. This is also a human action recognition task, 

which means a many-to-one model. The architecture 

of this model is a global attention model followed by 

an accumulative learning curve (ALC) model.  
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3. Dataset and Features 

 

The dataset of this project is collected and provided 

by Dr. Falisse. Each example is a series of 

single-person movements performed in 0.5 second 

(30 frames at 60 Hz), represented by the 3D 

coordinates of a set of body key markers. The input is 

a reduced set of markers, and the output is a more 

complete set of biomarkers of the same subject over 

the same time period under the same movement. The 

mentor suggested using only part of the complete set 

of markers because they do not care about the 

outcome of the rest.  

 

The input data provided is each of size (30, 65). 

Since this project only cares about part of the marker, 

the input will be reduced to the size of (30*47) before 

being actually fed into the model. 30 frames represent 

the length of the motion. 47 represents the feature 

dimension, including the 3D coordinates of 15 

markers, and the height and weight of the subject 

(3*15+2 = 47). The 3D marker data are expressed 

with respect to a reference marker and normalized by 

the subject height. The corresponding output is a 

30*105 matrix. While 30 is the same time dimension 

feature, 105 is the 3D coordinates of the 35 predicted 

markers (35*3=105).  

 

Figure 1 is an example of how the input array of 

(30, 65) looks like. Figure 2 is the visualization of trc 

file in OpenSim. The blue dots represent an example 

of the input movement, and the green dots represent 

the corresponding output with a more complete set of 

markers. 

 

 
Figure 1: Input data of numpy array with shape (30, 65). 

 

 
Figure 2: OpenSim visualization of trc file. 

 

The entire dataset contains 121,554 examples, 

which is split into training, evaluation, and testing sets 

with distribution of 80%, 10%, 10%. The splitting 

method makes sure that all of a participant’s data 

resides in only one set.  

 

4. Methods 

 

4.1 Long Short-Term Memory Network (LSTM) 

 

The first model that we examined was the long 

short-term memory network (LSTM) [5], which is a 

particular type of recurrent neural network, or a RNN. 

In general, a RNN is a network that uses sequential 

data or time series data. It is unique from other neural 

networks due to its ability to take information from 

prior inputs to influence its current input and output. 

The output of RNN depends on the prior elements in 

the sequence. As shown in Figure 3, an LSTM 

network uses the input for the current time-step and 

the output from the previous time-step to produce a 

new output which is fed to the next time step [2]. In 

the LSTM architecture, there are three types of gates 

(input gate, output gate, forget gate) for each memory 

cell. These three gates regulate the flow of 

information into and out of each cell.  

 

The characteristics of LSTM make it a great 

candidate for our task where we input time series data 

and output time series data, and output at each 

time-step should depend on prior elements in the 

sequence. We implemented the LSTM model 

described by Uhlrich et al. [6] as our baseline model. 
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Figure 3: Long Short-Term Memory Neural Network [2] 

 

4.2 Bidirectional LSTM 

 

Bidirectional LSTM is a variant of LSTM that not 

only takes into account information from prior 

time-steps but also information from future time-steps 

when producing output at the current time-step. This 

is achieved by running a forward LSTM and a 

backward LSTM model and concatenating their 

outputs at each time-step. Since our task involves 

predicting a set of markers’ positions in a series of 

time points, we believe that at any time point t, both 

input positions before time t (past) and after time t 

(future) would be helpful to predict marker position at 

time t. As a result, we hypothesize that using 

bidirectional LSTM might achieve better accuracy 

than unidirectional LSTM. 

 

4.3 Attention Mechanism 

 

 The attention mechanism is another popular 

modern deep learning architecture that is used for 

action classification and pose estimation 

[1][3][4][8][9]. Although RNN architectures already 

take into account information provided by prior 

elements in the sequence, the information could get 

lost when the input sequence gets longer. The 

attention mechanism is a good way to propagate 

contextual information through the entire network 

with a trainable attention weight that tells the model 

which members of the input sequence the model 

should be paying more attention to when producing 

the output at the current time-step.  

 

 Our implementation of the attention layer is 

inspired by the spatial attention proposed by Song et 

al. [9]. At each time step t, given the full set of K 

markers  where . The scores 

 for indicating the importance of the K 

markers are jointly obtained by:  

where  is the output sequence from a LSTM layer 

with return_sequence set to True, and W and b be the 

learnable parameter matrix and bias vector. The 

activation for the kth marker  can be calculated by 

applying the softmax function. The larger the 

activation the more important the marker is for 

predicting the position of the new set of markers. We 

used the attention mechanism along with the 

bidirectional LSTM model proposed earlier.  

 

4.4 Evaluation Metrics 

 

The loss function that we try to minimize during 

training is the mean squared error (MSE) loss. For 

quantitative evaluation of our model’s performance, 

we compute the root mean squared error (RMSE) and 

mean per marker error (MPME) on the test set. An 

important feature that our collaborator cares about is 

the coherence of the predicted markers’ movement. 

We plan to visualize the movement of the predicted 

markers in a few examples that our collaborator has 

identified as unsatisfactory to qualitatively evaluate 

the performance of our model as compared to the 

baseline model. 

 

5. Experiments/Results/Discussion 

 

We trained our models for 50 epochs with early 

stopping monitoring validation MSE loss to prevent 

model overfitting to the training set. We used a 

batch_size of 64 in all our experiments because 

increasing the batch_size resulted in memory error. 

The quantitative results of our experiments are 

summarized in table 1. The heatmap from our 

attention output is shown in figure 4. The plots of the 

training losses are stored in the figures folder on 

github. They are not included to enforce the 5-page 

limit. In addition, we also visualized the movement of 

the predicted markers in a few examples that our 

collaborator has identified as unsatisfactory to 

qualitatively evaluate the performance of our model 

as compared to the baseline model. The visualization 

of the marker movement will be included in the final 

presentation.  
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The results for the three experiments proposed in 

the method section aligned with our hypothesis. The 

bidirectional LSTM model performed better than the 

baseline LSTM model, and the bidirectional LSTM 

with attention model performed better than the 

bidirectional LSTM model. As shown in the heatmap 

in figure 4, in this example, our model learned to pay 

more attention to certain markers at each time-step, 

which helped the model to achieve better results.  

 

In addition to the three experiments mentioned in 

the method section, we also modified our model 

architecture to add a second attention layer before the 

last layer to replicate the spatial-temporal attention 

model proposed by Song et al. [9]. The result of this 

model was not very good potentially due to the 

different natures of the two tasks. Song et al.’s spatial 

temporal attention model was proposed for action 

recognition, where the model has a time series of joint 

positions as input and a single action label as output, 

which has a many-to-one relationship, while our task 

has a many-to-many relationship. Further task 

specific modifications of the temporal attention layer 

may be needed to be applied to our task.  

 

We also conducted hyperparameter experiments 

with our bidirectional LSTM with attention model. 

We experimented with learning rate and number of 

additional LSTM layers in our model. We found that 

out of the values that we experimented with, our 

model achieved better results with 1e-4 learning rate 

and no additional LSTM layers. We did not 

experiment with even higher learning rate because 

with higher learning rate, validation MSE loss 

becomes unstable and triggers early stopping, which 

prevents learning at an early epoch number (the 

training error still decreases). The better result 

achieved by a smaller number of additional LSTM 

layers might be attributed to the gradient problems 

associated with deeper RNN networks. Further 

analysis on the gradients is needed to draw a 

conclusion.  

 
Table 1: Experimental Results. Bi-LSTM refers to 

bidirectional LSTM; lr refers to learning rate; nLayers 

refers to additional LSTM layers; 2 Attention layers refers 

to adding an additional Attention layer after the main 

LSTM layer to replicate the temporal attention layer 

suggested by [9]. The Bi-LSTM + Attention with 1e-4 

learning rate and 2 additional LSTM layers model achieves 

better results as compared to other test models.  

 
RMSE 

(mm) 

MPME 

(mm) 

Baseline (LSTM), lr 5e-5, nLayers 2 8.7 13.1 

Bi-LSTM, lr 5e-5, nLayers 2 7.8 12.0 

Bi-LSTM + Attention, lr 1e-5, 

nLayers 2 

7.5 11.2 

Bi-LSTM + Attention, lr 3e-5, 

nLayers 2 

7.2 10.6 

Bi-LSTM + Attention, lr 5e-5, 

nLayers 2 

6.9 10.4 

Bi-LSTM + Attention, lr 7e-5, 

nLayers 2 

6.8 10.2 

Bi-LSTM + Attention, lr 1e-4, 

nLayers 2 

6.4 9.7 

Bi-LSTM + 2 Attention layers, lr 

5e-5, nLayers 2 

8.0 12.1 

Bi-LSTM + Attention, lr 5e-5, 

nLayers 3 

7.0 10.5 

Bi-LSTM + Attention, lr 5e-5, 

nLayers 1 

7.0 10.7 

Bi-LSTM + Attention, lr 5e-5, 

nLayers 0 

6.6 10.1 

 

 

 

 
Figure 4: Spatial Attention Heatmap. The x-axis represents 

the 15 input markers and the y-axis represents the 30 

time-steps. The output focuses more on different sets of 
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input markers at different time-steps. The values in each 

row sum to 1.  

 

6. Conclusion/Future Work 

 

Our work illustrated the effectiveness of 

attention-based bidirectional LSTM models in the 

relatively new field of predicting the position of a 

comprehensive set of human anatomical markers 

from a limited set of markers generated by human 

pose estimation algorithms. The attention-based 

bidirectional LSTM model performed better than the 

other proposed models potentially because the 

attention mechanism allowed the model to focus on 

more important input features as opposed to paying 

equal amount of attention to all input features, and the 

bidirectional LSTM architecture allowed the model to 

make predictions based on both past and future 

marker positions.  

 

Due to time constraints, we did not have the 

opportunity to fully explore the spatial-temporal 

attention mechanism proposed by Song et al. [9]. If 

we had more time, we would try to adapt the 

spatial-temporal attention mechanism to fit our task. 

Moreover, we would also take more advantage of the 

attention output. For instance, we could incorporate 

the attention output and known physical constraints to 

our loss function. For example, some markers in the 

input set may be more relevant to predicting 

anatomical markers that are closer to them. By 

creating a mapping between input markers and output 

markers, we could use the attention output to penalize 

the model for paying attention to relatively irrelevant 

markers when making predictions about a certain 

marker’s position. We would also benefit from a more 

comprehensive hyperparameter search if time 

permits.  

 

7. Contribution 

 

Kevin Chen: coding implementation, result analysis, 

write-up; Celia Hu: literature review, proposed model 

structures, write-up.  

Special thanks to our Stanford collaborator Dr. 

Antoine Falisse and our TA Sarthak Consul for 

providing help and advice through the entire project.  
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