
Predicting Countries in Southeast Asia using
Convolutional Neural Networks

Samuel Chian
Institute for Computational and Mathematical Engineering (ICME)

Stanford University
samchian@stanford.edu

Mishal Mrinal
Institute for Computational and Mathematical Engineering (ICME)

Stanford University
mishal5@stanford.edu

Abstract

This paper introduces a CNN model used to predict Southeast Asian countries using
images scraped from Google Street View API. We introduce a grid-based method
to train an 18 layer ResNet on this problem that managed to achieve an accuracy of
90% on test and validation sets of size 1000 after being trained on 38000 images
of Singapore, Thailand, Cambodia and Malaysia for 5 epochs (after regularization
by early stopping) using minibatch gradient descent with momentum.

1 Introduction

Geoguessr is a geographical browser game where players guess locations of images from Google
street view images. In particular, there exists game modes where the human player is unable to
move the camera upon viewing the image, making it harder to guess where the exact location is as
they are unable to search around for external information such as languages of signboards/roads.
In the game, there are also various scoring systems: (1) Correct classification of country, or (2)
Latitude-Longitude-based scoring.

As avid Geoguessr players, we have often watched the world championships of Geoguessr and have
always been fascinated by how the top Geoguessr players have different strategies to get extremely
accurate results, even in the latitude-longitude mode. As such, it is of particular interest to us to see
whether it is possible to build a model that could perform on par, or even better than human players
in this no-move, latitude-longitude mode as we believe that this is the hardest mode of the game.

Beyond just playing the game, there exists other opportunities where identifying exact locations of
a picture might be useful. For example, one might want to do automatic geotagging of locations
based off the image, or even identifying where a missing person might be located if an image of their
background can be found.

To build this model, we hope to use Google street view images as the input to the model, we then
hope to use a Convolutional Neural Network (CNN) to first see if we can classify a country correctly
based on the image, and possibly output where in the country the picture came from.

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



2 Project Novelty

2.1 Application

One area of project novelty that our project has lies in the problem in which we are trying to solve.
While computer vision classification tasks are often solving to identify objects that are pretty similar
between images (e.g. is an object a dog?), this task involves learning the different geological features
of the region (i.e. plants, buildings, etc.) to learn about whether an image belongs to a certain country.

Previous work in this area has tried to do this task on areas that are geologically very different (e.g.
Denmark vs. USA), which are easier tasks due to the difference in architecture. Furthermore, they
are generally done on locations that are easy to distinguish such as city areas. However, we hope
to solve this on a region with a lot more similarities between countries, and without only choosing
specific parts of the country that are easy to classify.

2.2 Method

Previous work that has tried to do a location-specific prediction is generally limited to a single country
such as the USA. However, we wanted to extend this idea to multiple countries as well. To get the
location-specific prediction, we split each country into a set of 2,500 grids (for a total of 10,000
grids)1, and assign a unique index to the grid location. Therefore, we can see if we can predict the
actual location of the image based on a grid (see Figure below for an illustration).2

Figure 1: Illustration of Grid

3 Dataset and Features

For our preliminary results we scraped 10,000 images each for Cambodia, Singapore, Thailand and
Malaysia from Google Street View API. This was done by first creating a bounding box around the
particular countries, and uniformly sampling latitudes and longitudes within this bounding box. As
Google Street View API does not have images for every latitude-longitude pair, it might lead to certain
areas having slightly more sampling than others. However, due to the size of the sample collected,
the data should be a good representation of the different landscapes across all the 4 countries.

To train, validate, and test our model, we used a training set of 38000 images (evenly split amongst
all countries), and used a dev and test set of 1000 each (consisting of an even split of all countries).
Some examples of the dataset images are found below:

4 Experiments/Results/Discussion

As the classes were very evenly balanced due to our manual data scraping, we mainly focused on
looking at the accuracy of our results as ultimately we care the most about getting the prediction
correct for the game.

1Ultimately, this left quite a few classes empty due to the fact that Google API only has street view in certain
parts of countries, and so the actual number of grids with images in them was 251

2We also attempted to implement a custom loss function was attempted to penalize country and latitude-
longitude. However, due to the time-constraints, we could not implement this custom loss function successfully

2



Figure 2: A Google street view image in Sin-
gapore

Figure 3: A Google street view image in Cam-
bodia

4.1 Country Classification Task

In this task, we mainly work on the task of classification of the country based on cross entropy loss.

4.1.1 Baseline

For our baseline model, we trained a convolutional neural network as we are working with image
data. For the architecture of our baseline model, we went with the following:

CONV 1 → POOL1 → CONV 2 → FC1 → FC2 → FC3 → OUTPUT

We chose this architecture as we believe it is a fairly basic model that would give us a good target to
try to beat. For our training we used mini batch gradient descent on a batch size of 32 with momentum
(β = 0.9) and learning rate 0.001, and cross entropy loss as our loss function. Since we were training
a baseline model, the choice of using β = 0.9 seemed reasonable as this is regarded as a standard
setting for β. We used a learning rate of 0.001 as this appeared to give us a reasonable improvement
across epochs. We generally stopped by 10 epochs as the results did not seem to be improving.

4.1.2 Baseline Results

Using our baseline model, we first tried the classification task on two countries that had very different
geological features: Singapore, and Cambodia, to see the results on an easier task. When we did this,
we managed to obtain a 96% training accuracy, 97% validation accuracy and 95% test accuracy. As it
seemed like a basic model could pick up the differences between a more rural country like Cambodia
and a more urban country like Singapore (i.e. see the two images above for reference), we added two
additional countries that have more similar geological features: Malaysia and Thailand, into the mix.

For this harder classification task, our baseline model we had a training accuracy of 72 %, a validation
accuracy of 69% and a test accuracy of 72% after 10 epochs. While the training accuracy was still
going up, the test and validation accuracy plateaued and thus we decided that minimizing the loss
further will not improve the predictions.

4.1.3 Model Improvements

While the baseline model had done much better than just random guessing (i.e. we only expect 25%
accuracy on random guessing), we next tried much deeper neural nets, pre-trained on image data
to see how much better they could perform. In particular, we tried various depths of ResNet and
VGG (ResNet18, ResNet50, ResNet152, VGG11, VGG13, VGG16, VGG19). For these experiments,
we also used cross entropy loss, and the same training hyperparameters for the minibatch gradient
descent as the baseline.

As the models generally performed equally well, we chose the simplest model (ResNet18) for our
further experiments. We also noted that there was significant overfitting going on, as the model was
having extremely high training accuracy, but this did not reflect as well in the validation and tests sets.
As we noticed that this generally happened before epoch 10, we generally ran until epoch 10, hoping
to regularize by early-stoppage for our final model.

3



Figure 4: Training Curve for Baseline

Model Training Accuracy Validation Accuracy Test Accuracy
ResNet18 99% 85% 86%
ResNet50 99% 84% 82%
ResNet152 99% 80% 86%
VGG11 99% 80% 85%
VGG13 99% 77% 85%
VGG16 99% 83% 79%
VGG19 99% 81% 83%

Table 1: Training, Validation Test Results for Deeper Models

Additionally, after selecting ResNet18 as the model that we wanted to proceed with and fine tune, we
did a hyperparameter search on a much smaller sample to determine the optimal hyperparameters.
These were determined to be a learning rate of 0.01, momentum at 0.9, and a mini-batch size of 16.

Figure 5: Training Curve for ResNet18 on Country

4.2 Location Classification Task

In this section, we focus on the task of classifying the image based on the particular grid number
assigned to them, based on cross entropy loss and the tuned hyperparameters.

4.2.1 Grid-based Classification

Given that now we have 10,000 possible classes, the prediction problem became much harder. This is
evident in the training curve below for 100 epochs, where we could not get reasonable results for all
three subsets of the data. While we do see that training accuracy is continuing to go up, it seems like
validation accuracy has already plateaued at approximately 5%. Therefore, it seems unlikely that we

4



would be able to achieve higher accuracy than this. While this definitely is a poor job at getting the
exact location right, it is still much better than randomly guessing which would be 0.01% accuracy3.

Figure 6: Training Curve for ResNet18 on Grid Number

4.2.2 Final Model

While counting the accuracy of when we get the exact grid right might not produce good results, there
also existed the possibility that we could be predicting grid numbers that are closer to each other but
not exactly the same, which would be missed out by this metric. Therefore, we also tried to use the
grid-based prediction and map it back to the country. When we do this, we realized that we get better
results than the original classification task, and got validation and training accuracy closer to 90%.

Figure 7: Training Curve for ResNet18 on
Grid Number then converted to Country Figure 8: Confusion Matrix on the Test Set

5 Conclusion & Future Work

We weren’t successful in our initial aim of trying to predict exact locations of pictures, however if
we were to loosen our metric from exact guesses to rough distances from the actual location, then
the model was actually able to make great progress and it was noticing this fact that gave us the idea
to use the benefits of grid based classification training in order to predict countries. However, the
minimal success that we were able to achieve with our grid based classification system suggests that
there is some potential in being able to train a grid classifier given favorable conditions like a lot
more training data, larger model architecture and longer number of training epochs.

Another potential area of future work is in implementing our custom loss function. Since we were
taking the prediction of the model as the max over all the classes, there was a breaking in the
computational graph of the model that didn’t allow PyTorch to backpropagate when using our custom
loss function. If we were able to side step this issue, it would be interesting to see the kinds of results
the model is able to obtain.

3 0.4% accuracy if we only count classes with images in them

5



6 Contributions

Mishal: Worked on the final project write up and presentation slides. Scraped images for Cambodia
and Thailand. Worked on code to convert grid label predictions to country predictions used in the
training phase of all models. Did post-training analysis on ResNet18 model to produce confusion
matrix.

Samuel: Worked on the final project write up and presentation slides. Scraped images for Singapore
and Malaysia and uploaded all data onto AWS. Worked on code to preprocess data and label images
according to grid labels. Wrote code for the training of the various models on AWS, worked on the
hyperparameter tuning, and produced the different training graphs.

References
[1] Paszke, Adam and Gross, Sam and Massa, Francisco and Lerer, Adam and Bradbury, James

and Chanan, Gregory and Killeen, Trevor and Lin, Zeming and Gimelshein, Natalia and
Antiga, Luca and Desmaison, Alban and Kopf, Andreas and Yang, Edward and DeVito,
Zachary and Raison, Martin and Tejani, Alykhan and Chilamkurthy, Sasank and Steiner,
Benoit and Fang, Lu and Bai, Junjie and Chintala, Soumith (2019) PyTorch: An Imperative
Style, High-Performance Deep Learning Library, Advances in Neural Information Processing
Systems 32 8024–8035, Curran Associates, Inc. http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun (2015) Deep Residual Learning for Image
Recognition https://arxiv.org/abs/1512.03385

[3] Karen Simonyan, Andrew Zisserman (2014) Very Deep Convolutional Networks for Large-Scale
Image Recognition https://arxiv.org/abs/1409.1556

[4] Sudharshan Suresh, Nathaniel Chodosh, Montiel Abello (2018) DeepGeo: Photo Localization
with Deep Neural Network https://arxiv.org/pdf/1810.03077.pdf

[5] Hugovk (2021) Random Street View Github Repository https://github.com/hugovk/
random-street-view

[6] Stelath (2021) GeoGuessr AI Github Repository https://github.com/Stelath/
geoguessr-ai

6

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1409.1556
https://arxiv.org/pdf/1810.03077.pdf
https://github.com/hugovk/random-street-view
https://github.com/hugovk/random-street-view
https://github.com/Stelath/geoguessr-ai
https://github.com/Stelath/geoguessr-ai

	Introduction
	Project Novelty
	Application
	Method

	Dataset and Features
	Experiments/Results/Discussion
	Country Classification Task
	Baseline
	Baseline Results
	Model Improvements

	Location Classification Task
	Grid-based Classification
	Final Model


	Conclusion & Future Work
	Contributions

