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1 Introduction

Earthquakes are one of the most lethal naturally occurring hazards, accounting for three of the
top five deadliest natural disasters in recent history (3). In addition to being extremely hazardous,
earthquakes are also unpredictable, making it difficult to design for their effects. One method that can
be used to estimate unknown earthquake behavior is to construct physics-based models of geologic
hazards and estimate the impacts of different seismic scenarios. This method, however, is very
computationally expensive and requires significant physical knowledge of the fault and surrounding
area. Instead a common alternative is to use pre-constructed ground motion prediction equations
(GMPEs) to estimate key response parameters. These GMPEs are attenuation relationships that take
key characteristics of the earthquake’s estimated source, path, and site and output parameters used for
structural design and hazard mitigation purposes.

GMPEs are generally difficult to create and require large amounts of knowledge about the underlying
mechanics of seismic events and geophysical processes. As a result, there are only a handful of
GMPEs that are widely used in practice. As you increase the parameters of a GMPE, generally the
range of scenarios and geographic locations that it is applicable to, decreases while its estimated
accuracy increases. Because of this, there are different GMPEs currently used with a wide variety of
use cases that depend on required accuracy, generalizability and available information.

The goal of this study is to determine the feasibility of using machine learning methods to circumvent
this required knowledge and produce new GMPEs with a model that has no prior information on
geomechanical principles. One use case of a framework such as this would be to construct a GMPE
specific to the available inputs of a given earthquake scenario to create a more accurate hazard
prediction than using an existing GMPE with either too many or too few input parameters.

GMPEs are often used to output a response spectrum, which is a tool used by structural engineers
and risk analysts to evaluate the potential effects of a seismic event on varying building taxonomies.
Therefore, the output of the trained model will also be a response spectrum. In order to quantify the
accuracy of this model output, the response spectrum from both the GMPE and from the learned
model will be compared to a “ground-truth” response spectrum calculated by running a linear
response history analysis on the accelerogram that corresponds to a given earthquake event. Since
these response spectra are a series of discrete paired values, the accuracy can be calculated using the
mean average percent error of each series. Mean percent error was chosen as a metric in an attempt
to limit the over-penalization of response spectra with large ordinate magnitudes, as this is widely
variable between seismic events.
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2 Related work
Currently, a research team from the Department of Civil Engineering at IIT Madras, Chennai is
conducting research on the use of various neural network architectures for GMPE estimation, however,
the models proposed by this team follow similar classification approaches that are used in traditional
GMPE formulation. Specifically, the team’s models are predefined to specific tectonic regimes that
rely on prior knowledge of the geomechanical makeup of the chosen region. One of the key ideas
of this analysis is to identify the feasibility of training a model to overcome these limitations, and
become capable of adjusting its prediction to account for varying tectonic conditions.

3 Dataset
The dataset chosen for this analysis was NGA-West2, a collection of ground motion attenuation data
covering the western United States. This database contains over 200,000 realizations that include
spatial and geotechnical data regarding both the seismic event, and the location where the ground
motion was recorded, providing a robust description of each instance.

Each instance in the database also includes a response spectrum associated with the event at the
location it was recorded, which will serve as the "ground-truth" for each instance. Although the
NGA-West2 database contains ground motions collected across a variety of locations, it is important
to note that this database is not comprehensive over all tectonic regimes and largely represents shallow
crustal events. Other databases that may be explored in the future include GeoNet, FDSN, and K-Net,
all of which contain strong motion data from across the globe.

The primary reason these databases were excluded from this analysis was due to the GMPE used
for performance comparison. The GMPE used in this analysis is the 2014 Boore, Stewart, Seyhan,
and Atkinson (BSSA) GMPE (1), which is only valid over shallow crustal faults, so using it as
a performance metric over all tectonic regimes would not be appropriate. Since the NGA-West2
database contains primarily shallow crustal events, it was determined that this would be a good initial
database to use in conjunction with the BSSA GMPE as a metric to gauge new model performance.
The few events that do not strictly conform to the shallow crustal regime were left in the dataset to
serve as adversarial examples for training, in attempts to increase the robustness of the trained model
output.

One key element of the NGA-West2 database is that it contains recordings of the same seismic
event from many different geographic locations, all of which may produce different response spectra.
Because of this, the data could not be split randomly into test, train, and validation sets. Instead, the
data was first clustered to ensure that all recordings of a specific event were contained within only one
set. Once this was confirmed, the data was shuffled within each dataset to eliminate any sequential
dependencies. The 200,000 events were split roughly into 80% for training, 10% for validation, and
10% for testing.

4 Approach
4.1 Model Inputs
Two scenarios were explored to test the feasibility of using machine learning methods to estimate
attenuation relationships. The first scenario exclusively used the inputs required for the BSSA GMPE
and evaluated whether a trained model could outperform the GMPE. The second scenario added
additional input parameters relating to source and site characteristics and evaluated whether this
resulted in increased performance of the trained model. In the following tables the model using only
the BSSA input parameters will be referred to as “BSSA Params” and the model using additional
parameters will be referred to as “All Params”. A full list of parameters included in each of these
models can be found in Tables 4 and 5 in the appendix.

4.2 Model Outputs
One of the hyperparameters analyzed during training was the number of model output nodes. The
original intuition was to include the natural period of a structure as an input parameter and try
to estimate a single spectral acceleration. While this method produced reasonable accuracy (see
Results section), its training turned out to be very slow. Instead, if a series of periods were passed as
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input parameters, the model could output a series of spectral accelerations, thus predicting an entire
response spectrum rather than a single value. This second method resulted in lower overall loss and
trained on an order of twice the speed as the single-period prediction method. In subsequent testing,
it was determined that periods need not be included as input parameters, as long as the range over
which the response spectra was being calculated remained constant, which further decreased training
time. The hyperparameter search continued by altering the length of the output series, reaching an
optimal length of 35 output nodes.

4.3 Model Architectures

Two model architectures were considered in this analysis, a dense neural network and a gradient-
boosted decision tree model. For the dense neural network, the number of hidden units and batch
size were tuned using randomized search cross validation. Next, the number of layers was tuned in a
similar fashion. The resulting architecture is shown in Table 1 below.

Neural Network Architecture
Layer Units Dropout Rate
Dense # Inputs -
Dense 64 -
Dropout - 0.3
Dense 128 -
Dropout - 0.4
Dense 128 -
Dropout - 0.6
Dense 64 -
Dropout - 0.6
Dense 35 -

Table 1: Neural Network Architecture

The gradient-boosted decision tree model was constructed using the XGBoost framework. Several
rounds of hyperparameter tuning were conducted using randomized search cross validation, the
optimal parameters from this search are shown below in Table 2.

XGBoost Optimal Parameters
Parameter Value
Min Child Weight 1
Max Depth 5
Learning Rate 0.1
Gamma 0.1

Table 2: Boosted Trees Architecture

5 Results
While all models were able to outperform the BSSA GMPE on the NGA-West2 dataset, there are
some clear trends in the data. An aggregated list of model performance is summarized in the figure
below.

Mean Average Percent Error
Model Type Train Loss Validation Loss Test Loss BSSA Loss
NN: One Period -
BSSA Params

0.2772 0.2564 0.3070 0.3376

NN: BSSA Params 0.2448 0.2207 0.2693 0.3376
NN: All Params 0.2092 0.1893 0.1866 0.2826
XGB: BSSA Params 0.2264 0.2686 0.2962 0.3038
XGB: All Params 0.1028 0.0942 0.0934 0.2548

Table 3: Model Performance Summary
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The first trend, as stated previously, is that the model performed better (both in terms of training
speed and accuracy) when predicting the entire response spectrum as opposed to predicting
spectral accelerations at individual periods. The second trend that emerges is an increase in model
performance as additional input parameters are used. Note that in Table 3, the BSSA loss varies
slightly, this is due to differing test, train, and validation splits resulting from data being dropped due
to different missing input features.

An interesting result was that the XGB: BSSA Params model converged to predict, on average, a
response spectra very similar to the BSSA GMPE, with a mean absolute percent error of 0.0757
between the two models. Over the whole dataset, however, both this model and the GMPE had a
relatively large error compared to the XGB: All Params model. The model that used additional
parameters diverged more from the BSSA GMPE but fit the accelerogram data more accurately.
Visualization of these results is shown in the below figure, additional examples are provided in
Figures 5 and 6 in the Appendix.

Figure 1: XGB: BSSA Params Figure 2: XGB: All Params

Moving forward with the best performing model (XGB: All Param), a feature analysis was
conducted to determine which of the provided input features are most responsible for the increase
in accuracy. The feature importance was determined using the built-in feature importance method
from XGBoost, which computes importance based on how much a feature split improves model
performance within the decision tree. The results indicate that there are two primary features
responsible for increases in model accuracy, namely PGA and PGV. The full results of this feature
analysis can be seen in Figure 4 in the Appendix.

6 Future Work
The purpose of a GMPE is to provide an attenuation relationship without requiring excessive amounts
of effort. If the burden of collecting input feature data outweighs the benefit of using the GMPE,
it no longer serves its purpose as an efficient calculation tool. For this reason, further investigation
should be made into the features chosen for this analysis to conclude whether this is the case for the
features in this model. Features such as hypocentral depth, PGA, and PGV may require intensive
effort to calculate for unknown faults and therefore negate the usefulness of this model in realistic
applications. Additionally, study into the covariance of the input parameters could help to eliminate
unnecessary or redundant features. Lastly, alternate model architectures could be explored. The fact
that the model performs better when predicting the entire response spectrum series seems to indicate
dependence between points on the response spectrum. This information could be used to justify a
recurrent neural network architecture, which may provide even better results.

7 Conclusion
While the models presented in this study seem to indicate that using more parameters results in a
more accurate model of ground motion attenuation, it is important to consider the tradeoff between
collecting the data for these input variables and the desired level of model accuracy. As discussed
in the Future Work section, some parameters used in the presented models may be very difficult
to collect in practice, making the feasibility of using them potentially unrealistic. However, all
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models display similar or better performance than the baseline BSSA GMPE, indicating that machine
learning frameworks can be used to predict ground motion attenuation without the model requiring
any prior knowledge of geomechanical systems. This method shows promise as a feasible alternative
to traditional GMPE development and will hopefully continue to be investigated by future researchers.

8 Contributions
This work was developed by Thomas Little.
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Appendix
Features - BSSA Parameters

Feature Number Feature Name
f0 Earthquake Magnitude
f1 Joyner-Boore Distance (km)
f2 Rake Angle (degrees)
f3 Northern CA/Southern CA - H11 Z1 (m)
f4 Northern CA/Southern CA - S4 Z1 (m)
f5 Vs30 (m/s)

Table 4: Model Feature - BSSA Param

Features - All Parameters
Feature Number Feature Name
f0 Earthquake Magnitude
f1 Strike (degrees)
f2 Dip (degrees)
f3 Rake Angle (degrees)
f4 P-plunge (degrees)
f5 T-plunge (degrees)
f6 Joyner-Boore Distance (km)
f7 Hypocenter Depth (km)
f8 Fault Rupture Length
f9 Fault Rupture Width
f10 Vs30 (m/s)
f11 Northern CA/Southern CA - H11 Z1 (m)
f12 PGA (g)
f13 PGV ((cm/sec)

Table 5: Model Feature - All Params
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Figure 3: Feature Importance - BSSA Params

Figure 4: Feature Importance - All Params
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Figure 5: XGB: BSSA Params - Random Examples

Figure 6: XGB: All Params - Random Examples
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