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I. ABSTRACT

Pneumonia kills more children than any other infection
disease. While it can be diagnosed through x-rays, this is still
difficult for trained physicians. Additionally, adult xrays with
pneumonia is more publicly available compared to children’s
pneumonia x-rays, although children are more at risk from
pneumonia. This project aims to train a classifier on adult x-
rays to predict pneumonia in children x-rays. After pretraining
the model using transfer learning on ResNet18, the project
will explore the use of surgical finetuning in helping models
perform better due to the distribution shift.

II. INTRODUCTION

Artificial intelligence is capable of solving difficult medical
issues, such as the impact of childhood pneumonia. Since more
children die from pneumonia than any other infections disease
[1], it is crucial to accurately identify and treat pneumonia.

The first issue is that is not much publicly available child
x-rays of pneumonia, but there are large datasets containing
adult x-rays of pneumonia. Additionally, CNNs trained on data
from one hospital or a group of hospitals generalize poorly to
data from different hospital or hospital groups [2]. I hope to
combat these issues on two fronts. The first is training on
adult x-rays to generalize to children x-rays so that children
can be more quickly identified for pneumonia. The second is
attempting to improve the generalization between x-rays taken
from different hospital groups.

I aim to build a classifier to determine whether an x-ray
image contains signs of pneumonia or not. The goal is to build
a classifier that classifies images with greater accuracy than a
doctor and can handle classifying images taken on different
machines from different hospitals, which is a common problem
when classifying x-ray images. The classifier will be first
trained on a set of x-ray images from the NIH and generalized
to children’s x-rays.

This project is shared across CS 230 and CS 229. For CS
229, the goal is to create a classifier that performs well through
finetuning only on the children’s x-rays. Here, the goal is to
explore distribution shift by first training on adult x-rays and
then testing on children’s x-rays. CS 229 and CS 230 will use
the same pretrained model, resnet18, and the same children’s
x-ray datasets. CS 229 and CS 230 both share the use of
confusion matrices and saliency maps.

III. RELATED WORK

Prior work on identifying pneumonia in children and
adult x-rays have mostly used convolutional neural networks
(CNNs). Kermany et al 2018 demonstrated the success of
transfer learning combined with deep convolutional neural net-
works to classify pediatric x-rays as viral pneumonia, bacterial
pneumonia, or normal [3]. Kermany et al was able to achieve
an accuracy of 92.8%, a sensitivity of 93.2%, and a specificity
of 90.1% [3]. Additional work also proves the usefulness
of pretrained models. Ibrahim et al 2021 used a pretrained
model, AlexNet, to classify different kinds of pneumonia –
COVID-19 pneumonia, non-COVID-19 pneumonia, bacterial
pneumonia, and viral pneumonia [4]. AlexNet uses the ReLU
activation function in place of the sigmoid activation function,
and is composed of five convolutional blocks, followed by
two fully connected layers and one output layer. The model
achieved 94.43% testing accuracy, 98.19% sensitivity, and
95.78% specificity when predicting between normal and non-
COVID-19 viral pneumonia [4]. Additionally, prior work has
shown that a combination of data augmentation and dropout
boosts performance [5].

Additionally, prior work on distribution shift has presented
a variety of approaches. One common approach is to first
train on the source data and then generalize to the target
data [6]. However, since the goal of transfer learning is to
preserve useful aspects of the model while learning new
features, additional methods have also been introduced to
prevent overfitting. Some common methods include using
different learning rates per layer [7].

Surgical finetuning is a method that selectively freezes
different blocks in the model for better performance based
on different distribution shifts, instead of the classic method
of either finetuning the entire model or freezing all but the last
few layers of the model [8], [9]. In the case of a distribution
shift of subgroups where the training data was on one subgroup
and the testing data is on another subgroup, such as training on
cucumbers and artichokes to identify squash and cauliflower,
surgical finetuning argues that freezing the middle layers of
the model produces better performance [8].

Lee et. al 2022 suggested two different applicable methods.
The first was to freeze all model layers except the last layer
for data with spurious correlations. The second was to freeze



a model layer in the middle-to-end for problems handling a
subgroup shift.

I will be exploring both methods in this project, in conjunc-
tion with data augmentation and dropout.

IV. DATASET AND FEATURES

The pretraining dataset is from the RSNA 2018 pneumonia
challenge. The data is found here [10]. This is a collection of
30,000 adult x-rays, either with pneumonia or normal, that was
sourced from the public National Institutes of Health (NIH)
CXR8 dataset. The images were labeled by 18 physicians from
16 different institutions. These images were randomly selected
from the NIH repository of common thorax illnesses, and span
a range of age and gender. Since the data was for a pneumonia
challenge, only the training set was labeled, and therefore only
the training set was used. 10% of the training set was randomly
augmented by flipping the images horizontally and flipping
the images vertically. The training set contains 29,352 images,
10,510 x-rays of pneumonia and 18,842 normal images.

The training, validation and testing set were obtained
from the Guangzhou Women and Children’s Medical Center
[3]. This dataset contains 5848 images of viral pneumonia,
bacterial pneumonia, and healthy lungs in children 1-5 yrs
old. These images were obtained from Guangzhou Women
and Children’s Medical Center and were classified by two
physicians [11]. Together, they consist of 1575 x-rays of
normal lungs and 4273 x-rays of pneumonia. The validation
set consisted of 2924 images, 2143 of pneumonia and 781
of normal. The test set contained 2924 images, 2130 of
pneumonia and 794 of normal. The training set to finetune the
models were 100 randomly selected images from the validation
set.

Fig. 1. RSNA: pneumonia chest x-ray (left) and normal chest x-ray (right)

V. METHODS

The learning algorithms consisted of using data augmenta-
tion in conjunction with surgical finetuning. The pretrained
model used is ResNet 18 using the latest weights after
ResNet18 was trained to identify 1000 categories using Im-
ageNet. This model consists of 18 individual layers and 4
blocks, which are referred to as block 1, block 2, block 3,
and block 4. I chose to unfreeze block 2, block 3 and block 4
individually since surgical finetuning suggested that unfreezing

Fig. 2. Guangzhou: pneumonia chest x-ray (left) and normal chest x-ray
(right)

the middle or later blocks in the model work the best for
subgroup shift.

Since the classes are deeply unbalanced, I used weights to
rebalance the cross-entropy loss. The most common class had a
weight of 1, while the less common class was a value such that
when the proportion of the less common class was multiplied
with the value the less common class had the same proportion
of data as the common class. For example, since the validation
data is 26.7% normal x-rays and 73.2% pneumonia x-rays, the
weight for the normal class loss is 73.2%/26.7% = 2.7439.
The weight of the pneumonia class is 1. Similarly, for the
training data, the weight for normal loss is 1 and the weight
for pneumonia images is 2.1635. The testing set did not have
any weights applied to the loss.

I explored these models: finetuned, finetuned with dropout,
surgical finetuning with only unfreezing block 2, surgical fine-
tuning with only unfreezing block 3, and surgical finetuning
with only unfreezing block 4.

A. Finetuned with Dropout

I used the pretrained model in conjunction with a dropout
layer right before the fully connected layer. The dropout layer
uses a dropout probability of 0.5. The model was then trained
on the same 100 images from the validation dataset to finetune
the model.

B. Surgical Finetuning

For surgical finetuning, I unfroze only blocks 2, 3, and 4
individually so that there were three different models.

Block 2 refers to the second block out of the four blocks that
consist of the ResNet 18 model. This block is called conv3 x
in the figure above. Similarly, Block 3 refers to the third block
(conv4 x) out of the four blocks and Block 4 refers to the
fourth block (conv5 x) of ResNet18.

These blocks consist of two basic blocks. The first basic
block contained a convolutional layer, followed by a batch
norm layer, a relu activation function, another convolutional
layer, and then a batch norm layer. The second basic block
was a copy of the first basic block.

The models were then trained on the 100 validation images
for 3 epochs. Only the gradients of the block that was unfrozen
was updated. The gradients of all of the other layers were not
and were considered frozen.



TABLE I
EVALUATION METRICS OF ALL MODELS ON PNEUMONIA CLASSIFICATION OF X-RAY IMAGES ON TEST SET.

Baseline
(Finetuned Model)

Finetuned
with Dropout Unfroze Block 2 Unfroze Block 3 Unfroze Block 4

Accuracy 0.790 0.72845 0.784 0.791 0.7941
Precision 0.814 0.72845 0.828 0.817 0.815

Recall 0.923 1.00 0.889 0.919 0.928
F1 score 0.865 0.843 0.857 0.865 0.8679

TABLE II
CLASS BREAKDOWN.

Baseline
(Finetuned Model)

Finetuned
with Dropout Unfroze Block 2 Unfroze Block 3 Unfroze Block 4

Normal 43.30% 0% 50.50% 44.70% 43.50%
Pneumonia 92.30% 100% 88.90% 91.90% 92.80%

Fig. 3. Resnet18 Architecture

VI. EXPERIMENTS, RESULTS, AND DISCUSSION

A. Metrics

I used accuracy, precision, recall, and the F1 score as
the primary metrics. The F1 score will be the main metric.
Accuracy is the percentage of correctly classified images
divided by the number of images classified.

A false positive is an image that had been classified
as pneumonia but was really a normal x-ray. Icare about
minimizing the number of false negatives, since the goal is
to detect as many patients with pneumonia as possible. Ialso
care about minimizing the number of false negatives, since
people who do not have pneumonia should not be treated for it.

precision =
true positive

true positive + false positive
(1)

recall =
true positive

true positive + false negative
(2)

F1 score = 2 ∗ precision + recall
true positive + false negative

(3)

B. Hyperparameters

I used a minibatch of 4, a learning rate of 0.001, the Adam
optimizer, cross-entropy loss, and a training epoch of 3 across
all models, including the pretrained model.

I chose a learning rate of 0.001 out of 0.01, 0.001, and
0.0001 after testing the models on the validation set using
the baseline finetuned model trained on 3 epochs. A learning
rate of 0.01 produced 71% of accuracy, compared to the
learning rate of 0.001 that produced a 75% accuracy and
the learning rate of 0.0001 that produced 0.77% accuracy. I
chose a learning rate of 0.001 because the learning rate of
0.0001, while it had higher accuracy, trained the model too
slowly. In contrast, the results produced by 0.01 learning rate
had an accuracy that would not improve significantly despite
increasing the pretrained model’s epochs to 10 from 3 while
keeping the finetuned model’s training epochs at 3.

Next, I experimented with using the Adam optimizer com-
pared to stochastic gradient descent. Despite increasing the
training epochs from 10 to 3 for both pretraining and finetuned
baseline models, I noticed that the training loss would remain
constant when using stochastic gradient descent combined
with momentum. On the other hand, using Adam showed a
noticeable difference in decreasing training loss when pre-
training the model. The loss went from 3663.334 and an
accuracy of 75% to a loss of 3178.997 and an accuracy of
79%. However, the training loss stayed relatively constant for
the finetuned model. Since Adam made a noticeable difference
in the pretrained model, I continued using the Adam optimizer
across all models.

I experimented with the number of epochs needed for pre-
training and for training the models. I first pretrained the model
on 10 epochs and then trained the finetuned baseline model
for 3 and 5 epochs. At 3 epochs, the baseline model performed
well with a training accuracy of 83% and a validation accuracy
of 72%. However, after training the baseline model for 5
epochs, the baseline model showed clear signs of overfitting
with a 95% training accuracy and a 59% validation accuracy.
Since it was much easier to overfit the data when pretraining
the model for 10 epochs, I experimented with pretraining the
model for 3 epochs. This resulted in in a baseline that did not



Fig. 4. Confusion matrix for all 5 models.

Fig. 5. Saliency map using model with unfrozen Block 4 for correctly and incorrectly classified images.



easily overfit, so I chose to use 3 epochs for pretraining and
3 epochs for training the model.

I used a minibatch of 4 due to memory constraints of Google
Colab.

C. Results of Metrics

We can see the results of the models in Table 1 and the
confusion matrices in Figure 4. The best model was unfreezing
layer 4 while keeping the rest of the model frozen. This
produced an F1 score of 0.868. The second-best model was
the baseline, with an F1 score of 0.865. Finally, the worst
model was a finetuned model with a dropout layer with an
F1 score of 0.842. This model had a perfect recall, which
indicates that the model only learned to predict pneumonia for
every single image. Since about 72% of the validation and test
sets are pneumonia x-rays, finetuned with dropout produced
an accuracy of 72.8%.

As hypothesized, unfreezing the middle or later blocks of
the model produced similar or better results than finetuning
the model. Isee that although unfreezing blocks 2, 3, and 4
produced similar results, unfreezing block 4 produced the best
result, with unfreezing block 3 close behind. Ican see this most
clearly in the differences in the recall scores. A higher recall
score indicates a better identification of pneumonia. This may
be because the subgroup distribution shift relied on sharing
mostly similar fundamental features, and as a result the blocks
unfrozen towards the output layer of the model were most
necessary in distribution shift.

Since the hyperparameters were chosen to best prevent over-
fitting, the finetuned with dropout model may have performed
the worse because it added regularization when it was not
needed. It was most interesting that the finetuned model with
dropout learned only to guess a single class every time. I
believe this is due to the dropout probability being too high at
p=0.5 as well as the position of the dropout layer being right
before the output layer.

D. Class Prediction Breakdowns

Let’s take a closer look at the class prediction breakdowns
for each model in Table II.

We see that across all the models, all models performed bet-
ter in identifying pneumonia compared to identifying normal
images. This may be what is contributing to the low accuracy
and f1 scores. As suspected, the finetuned model with dropout
predicted only pneumonia for all of the images.

E. Overfitting

I do not believe any of the models experienced overfitting. If
there was overfitting, there should have been a large difference
in the performance between the training set and the validation
set, and no such difference in performance was observed.
The poor performance of the finetuned model with dropout
suggests that overfitting was not an issue.

F. Saliency Maps

Next, let us examine the saliency images from the best
performing model, unfreezing block 4, to see what the model
learned. These maps are shown in Figure 4.

The presence of pneumonia is determined by small white
spots in the lungs, which should show up on the x-ray. We
expect the model to focus on the lungs and in particular white
spots in the lungs that indicate pneumonia.

First, we see that in the case of a correctly classified normal
x-ray, the model focuses on only one side of the chest, with a
particular focus on the lung. The model’s focus is represented
by the red dots of color – the brighter the dots, the higher the
focus. Next, in the case of a correctly classified pneumonia
x-ray, the model also focuses on one side of the chest – this
time, on the lower side of the chest.

In the false positive case, where the x-ray was normal but
it was classified as pneumonia, we see that the model focused
on both sides of the chest, one up high and one down below.
Oddly, it also focuses on the spine and the ribcage, which may
indicate the cause of the incorrect classification – the model
had been focusing on the wrong spot. Finally, let’s look at the
false negative, when the x-ray was indicative of pneumonia but
was classified as a normal x-ray. The model is again focusing
on the bones of the body instead of the x-ray.

Overall, it seems that in the correctly classified images, the
model focuses on the area where the lungs are. In contrast,
when the model predicts x-rays incorrectly, the model focuses
on the bones of the body. Since pneumonia presents as cloudy
white spots in the lungs, one possible explanation is that the
bones may have had some spots that mimicked pneumonia on
the x-ray.

VII. CONCLUSION AND FUTURE WORK

The best model that was produced was using surgical
finetuning to freeze the last block in a pretrained ResNet18
model. This may be because of the distribution shift from
training on adults to children. Since pneumonia presents
similarly on x-rays regardless of age group, freezing earlier
layers of the pretrained model ensures that only the parts of
the model necessary for learning subgroup shifts is modified
to produce better results. However, the finetuned model was
a close second, followwed by the model with the unfrozen
block 3, unfrozen block 2, and then the finetuned model with
dropout.

A few areas of future work are needed to increase the
F1 score and combat the confusion the model has when
classifying images. First, the images should be preprocessed
using an autoencoder to denoise the image. Additionally, the
images should also be preprocessed to remove or reduce the
brightness of the bones in the x-rays. These bones confused
the model during incorrect predictions. What may also help is
image segmentation to focus only on the lungs of the image.

Additionally, the model was highly sensitive to the 100
images used for finetuning the model. Future work should
include testing out the best distributions and types of images
for the best finetuning.



VIII. CONTRIBUTIONS

I worked alone on this project. Some work was shared with
CS 229, and I worked with a partner for CS 229.
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