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Abstract

Text simplification aims to make language easier to read while preserving semantics
of the original text. Language is complex, so automated simplification has no
straightforward algorithm. However, discrete simplifying actions such as splitting
sentences, choosing simpler words, and dropping words are more tractable. We
have framed text simplification as a game in which the player chooses how to
simplify a text through a sequence of discrete simplifying actions. The game
score balances dual objectives of simplicity and semantic preservation. We train a
Reinforcement Learning agent to play the game.

1 Introduction

There is an extensive literature on automated text simplification (Al-Thanyyan, et al. 2021; Shardlow
et al, 2014). It has long been recognized that simplified text leads to more efficient human under-
standing and reasoning. Simplification also may become an important pre-processing step in NLP
applications, helping computers to learn and reason from text. It may be especially effective as a data
augmentation strategy for NLP applications (Van et al., 2021).

Simplification has two main goals: to enhance readability while preserving semantics of the original
text. These goals can conflict and must be balanced. For example, simplifying a text to a kindergarten
reading level often results in substantial loss of meaning and nuance. There is no single ’correct’ text
simplification. One expert or user may favor extensive paraphrasing and restructuring, while another
may favor minor editing for clarity. Ideally, simplification could be tuned to the needs of its audience.

Sequence-to-sequence models including large language models can produce effective simplifications.
However, such models have shortcomings (Kumar et al., 2020). They are difficult to tune for specific
audiences, and the supervised learning approach in a complex context such as NLP depends on
availability of large aligned training corpora that are targeted for specific audiences. For example,
a distinct training corpus would be needed for simplification to a 5th grade level versus to an 8th
grade level. These challenges have created interest in encoder-decoder models in which the decoder
is guided by reinforcement learning (Zhang and Lapata, 2017; Nakamachi et al, 2020; Yanamoto et
al., 2022).

Edit-based approaches take a different path to text simplification. These approaches rely more on
algorithms, databases of common simplifications, and scoring models. This reduces reliance on
large, high quality aligned training corpus when compared to a purely supervised learning approach.
However, it is a risky business to edit language sequences without the highly nuanced semantic and
grammatical capability of an LLM.

We seek to combine the best aspects of edit-based approaches and sequence-to-sequence models. We
frame text simplification as a multi-step game in which the player takes discrete edit-based actions.
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Discrete game actions are powered by LLMs that have been fine-tuned to a specific task, e.g., sentence
splitting. We teach a reinforcement learning agent to play the game and coordinate a series of discrete
simplifying actions. This approach enjoys the benefits of edit-based approaches (controllability and
modest training data requirements) while still leveraging the proven strengths of LLMs (excellent
semantic and grammatical nuance).

Figure 1 - The Text Simplification Game

Novelty. Our application of reinforcement learning to simplification differs from prior work. Zhang
and Lapata (2017), Nakamachi et al. (2020), and Yanamoto et al. (2022) apply reinforcement learning
to train encoder-decoder models, while our approach is more akin to edit-based methods of Kumar
(2020) or Narayan and Gardent (2016). And unlike prior edit-based work, our approach relies on
LLMs to ensure semantics and grammar are maintained.

2 Related work

This project is inspired by prior work that has sought to elaborate and clarify how discrete simplifying
actions contribute to a holistic simplification.

Specifically, the project builds on lexical simplification work by Xu et al. (2016) who created the
TurkCorpus. We also build on syntactic simplification work by Narayan et al. (2017) who created the
WebSplit corpus and defined the "Split-and-Rephrase" sentence simplification task. We also build
upon the ASSET corpus (Manchego et al., 2020). ASSET was created as "a dataset for tuning and
evaluation of sentence simplification models with multiple rewriting transformations."

Narayan et al. (2017) provides an outline of additional related work with a longer list of possible
rewriting operations: sentence compression, multi-sentence fusion, sentence paraphrasing, and
sentence simplification. Our project architecture could be expanded to encompass any number of
such discrete simplifying actions, each powered by its own dedicated fine-tuned model.

Kumar et al. (2020) proposes an "Iterative Edit-Based Unsupervised Sentence Simplification"
approach. Candidate simplifications are generated by applying discrete edits and are evaluated with a
robust scoring function. The spirit is very similar to our approach, however we use reinforcement
learning alongside fine-tuned large language models to optimize editing.

Several approaches have been taken to apply reinforcement learning to text simplification. Zhang and
Lapata (2017) introduced DRESS, an encoder-decoder model coupled to a reinforcement learning
framework. Nakamachi et al. (2020) use a reward based on grammaticality, meaning preservation,
and simplicity to train a BERT model. These holistic sequence-to-sequence models are a good
approach, but the approach we offer has greater flexibility to tune and tailor simplifications.
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3 Datasets, Features, and Model Preparation

ASSET Corpus for Training and Test. The ASSET corpus (Manchego et al., 2020) has 2000
validation and 359 test texts. We use the validation texts for game play during training. Our game
environment extracts features from the text using the Spacy NLP (Honnibal et al., 2020) and textstat
(https://github.com/textstat/textstat) packages. Features are used to provide game state and calculate
game score.

The ASSET corpus includes 10 human simplifications for each original text. We have augmented
the ASSET data with an eleventh simplification performed by GPT-3 davinci-text-002 (Brown, et
al., 2020) using the prompt, "Rewrite the following text so a young child can understand it." This
augmentation provides us with a ’zero shot’ benchmark.

Benchmark simplifications of moderately complex text (human and zero-shot) often achieved around
5 points of improvement on Flesch-Kincaid Grade Level (Kincaid et al, 1975) and ten points on
McAlpine EFLAW (McAlpine, 1997), with substantial variability. Please refer to the Appendix for
discussion of metrics.

We used additional datasets to fine tune models that perform discrete actions during game play:

TurkCorpus for Word Simplification. TurkCorpus (Xu et al, 2016) includes 8 human simplifications
of short texts drawn from Wikipedia. Human simplifiers were asked to preserve meaning "without
losing any information or splitting sentence." We created a ’Simplify Words’ action by fine-tuning
GPT-3 davinci-text-002 using 885 selected TurkCorpus examples where average syllables per word
was reduced by at least 0.2.

Wiki-BM for Split-and-Rephrase. The Split-and-Rephrase Wiki Benchmark or Wiki-BM (Zhang
et al, 2020) corpus includes complex sentences paired with "a presumably meaning-preserving
simplified rewrite containing multiple simpler sentences." Wiki-BM extends the work of Narayan et
al (2017) who introduced the "Split-and-Rephrase" task. We created a Split-and-Rephrase generator
by fine-tuning GPT-3 davinci-text-002 model using 720 examples from the Wiki-BM corpus.

CoLA Corpus for Grammar Checking. The CoLA training set (Warstadt et al, 2019) has 8551
examples of sentences that are labeled either grammatical ("1") or not grammatical ("0"). We used
this data to create a binary classifier so that our game can assess grammaticality of dropping words.
We used huggingface to autotrain a model (https://huggingface.co/autotrain). The resulting model
achieved 0.88 accuracy, 0.90 precision, and 0.94 recall. We used PyTorch (Paszke et al, 2019) to
implement a softmax activation function.

4 Methods

The game is implemented using PyGame (https://www.pygame.org/news) and is playable by humans.
We packaged the PyGame code into a custom OpenAI Gym environment (Brockman, et al., 2016) to
facilitate implementation of reinforcement learning. We implemented the agent and training loop in
Python, basing our approach initially on the textbook "Deep Reinforcement Learning Hands-On"
(Lapan, 2020) and later incorporating techniques from the cleanrl Python library (Huang et al., 2021).

4.1 Reward function

We chose a game score that captures dual goals of simplicity and semantic preservation.

Simplicity. We chose a simplicity measure derived from two traditional measures, Flesch-Kincaid
Grade Level and McAlpine EFLAW. Both measures can be calculated without reference to any
’ground truth’ human simplifications. The game is easily adaptable to other measures of simplicity, if
desired. We use the textstat Python package to calculate FKGL and McAlpine EFLAW.

Semantics. We measure semantic preservation according to cosine similarity of large language
model embeddings for the original text versus the "simplified" text. We use GPT-3 babbage model
embeddings and Python numpy to calculate cosine similarity. Our metric is easily adaptable as
semantic similarity measures evolve and improve.

Totalscore =
(70− EFLAW )

2
+ (30− FKGL) + 100

(
εO · εS

∥εO∥2 ∥εS∥2
− 1

)
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Grammar and fluency. Grammar and fluency could be scored (Kumar et al, 2020; Nakamachi et
al, 2020; Napoles et al, 2017). However, our game treats grammatical acceptability as a satisficing
metric. For Split-and-Rephrase and Simplify Words, GPT-3 is assumed to produce grammatical
results. For word dropping, we use our own grammar checker trained on the CoLA dataset.

4.2 Action space

We implemented a simple action space as detailed in Table 1.

Game Action Scope Description

Split-and-Rephrase Whole text Use fine-tuned LLM to break up long complex sentences
Simplify Words Whole text Use fine-tuned LLM to simplify vocabulary

Drop Word Single token Remove word or token if resulting text is grammatical
Keep Word Single token Do nothing; advance to next token

Table 1: Text Simplification Game Action Space.

4.3 State space

We chose to adopt a compact state space to inform our reinforcement learning model. By design, our
architecture leaves complex semantic judgment to the LLMs that execute actions. The state space
reports features that have low computational cost yet plausibly signal the need for simplifications.

State Element Description
1. Word length Number of characters in current word

2. Lemma length Number of characters in lemma of current word
3. Ancestor count Number of grammatical ancestors of current word
4. Sentence length Number of words in current sentence
5. Simplicity score A scaled version of game simplicity score

6. Split-and-Replace count Number of times Split-and-Replace executed in current game
7. Simplify Words count Number of times lexical simplification executed in current game

Table 2: Game State Space.

4.4 Model architecture

Our architecture is modeled on the Deep Q-Network architecture (Mnih et al., 2015) and implemented
in PyTorch. We have a more compact state space than many DQN variants. Unlike DQN, we do
not convey state at the pixel level, so we do not use convolution layers. Our policy network consists
of a 7x1 input reflecting our state space; three fully connected layers of 32 nodes each with ReLU
activation; and an output layer of Q-values for each of our 4 actions.

We trained the network by minimizing the expected mean square error between a learning target and
an approximation of the Q-function, using MSE loss function and Adam optimizer.

For hyperparameters, we used an epsilon decay of 1e-4, a learning rate of 1e-4, a gamma of 0.99, and
batch size of 32, sampled uniformly at random from a replay buffer. Like DQN, we used an online
network and a separate target network. We updated the target network every 128 game moves.

5 Experiments/Results/Discussion

In total, we logged more than 7100 games. A key metric to observe training progress is average score
over the past 100 games. Our best model achieved a peak of more than +9 points in score on average
over a 100-game span. Appendix Figure 3 depicts the training progress.

We used the EASSE package (Alva-Manchego et. al, 2019) to provide traditional simplification
metrics for our best model predictions on the ASSET test set, comprising 359 test sentences that
include human references for calculating BLEU and SARI scores. Taken as a whole, our metrics
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are competitive, yielding especially strong FKGL and relatively weak SARI. For comparison, we
present baselines of DMASS-DCSS (Zhao et al, 2018) and DRESS (Zhang and Lapata, 2017).
Both are common benchmarks scored using EASSE. DMASS-DCSS is regarded for its strength in
SARI metrics as it tends to make simplification choices similar to human simplifiers. DRESS applies
reinforcement learning with a SARI reward to encourage simpler outputs from a sequence-to-sequence
model.

EASSE Metrics: BLEU SARI FKGL Exact Copies Lexical Complexity
Game Agent 80.39 35.93 5.8 0.23 8.28

EASSE Human Reference 69.2 44.56 6.64 0.01 8.08
DMASS-DCSS 71.44 38.67 8.08 0.05 8.07

DRESS 84.24 37.07 7.7 0.22 8.13
Table 3: Comparison of EASSE Metrics Using ASSET test; https://github.com/feralvam/easse

Original Nevertheless, Tagore emulated numerous styles, including craftwork from
northern New Ireland, Haida carvings from the west coast of Canada (British
Columbia), and woodcuts by Max Pechstein.

Game agent Tagore emulated numerous styles. These styles included craftwork from northern
New Ireland. They also included Haida carvings from the west coast of Canada.
They also included woodcuts by Max Pechstein.

Human reference Tagore copied numerous styles including crafts from North New Ireland, Haida
carvings from west Canada’s coast (British Columbia) and woodcuts from Max
Pechstein.

Table 4: Illustrative Original Text and Simplifications.

From our earliest iterations, it was evident to us (and to the RL agent) that the Split-and-Replace
action is helpful in a strong majority of games. This is not surprising. Our simplicity score based on
FKGL and McAlpine rewards short sentences, and Split-and-Replace rarely loses many semantic
points. Also, we believe the training data for Split-and-Replace is of high quality.

We sought to balance the game by increasing effectiveness of the Simplify Words. Originally, Simplify
Words acted at the token level with a synonym generator. However, context matters a great deal when
simplifying words. We introduced a text-level action. We created a subset of TurkCorpus intended to
exemplify lexical simplification, but qualitatively we think this training data can be improved.

We sought to encourage exploration of Drop Word by several means. We added the sixth and seventh
state elements to encourage the agent to learn more quickly that both Split-and-Replace and Simplify
Words actions have diminishing returns when executed repeatedly.

6 Future Work

Reward function. The present model favors a "low-FKGL style" characterized by short, choppy
sentences. We think this is an effective simplification technique. In future work, we would consider
additional rewards for lexical simplification and fluency.

Action space. Additional, finer-grained simplifying actions should be added to the toolbox. While
our RL agent identifies some instances to "Drop Word" from its word-level optimization, this task
may realistically be better handled at the text level by a fine-tuned large language model. A few
hundred training examples focused on word dropping may be sufficient to produce a decent fine tune.
Other actions that could be added include passive to active voice, paraphrases, and rephrasing to
remove idioms, for example.

State space. One learning is that actions we initially thought could be executed at the word level
(word simplification and word dropping) in fact entail substantial contextual nuance. We now think
these actions are ideally performed in context of the whole text. This argues for a state space that
is focused on providing the agent with metrics relevant to the whole text, with less emphasis on
single words. Possibly, an embedding vector that encodes fluency and style could be designed and
incorporated.
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Model Architecture. Unless the state state is substantially expanded (perhaps by adding a text
embedding vector or encoding of fluency and style), we do not think the parameter count or depth of
the policy network is a constraint. Rather, we think the structure of the reward, action space, and state
space is primary. However if a larger state space and network is adopted, it could become relevant for
optimization that we will likely continue to observe a distribution of game scores characterized by
many games at or near a score of zero (typically when original sentences are simple) and also many
games with scores of +10 or more. In other words, outcomes can be characterized as bi-modal or
multi-modal. As the network becomes more complex, Huber loss may be more efficient than MSE,
and the C51 algorithm (Bellemare et al, 2017) might improve upon DQN.

Educational Applications. The game is playable by humans. A refined version of the game that
includes additional simplifying actions, a broad array of texts to simplify, and a battle-tested scoring
function could provide the engine for an educational tool useful for foreign language learners, children,
or technical writers who need to write for a global audience of non-native speakers.

7 Conclusion

We frame text simplification as a game that can be played by a human or a reinforcement learning
agent who applies discrete simplifying actions to text. We use fine-tuned large language models to
execute discrete simplifying actions, such as sentence splitting and simplifying words. We show
preliminary, promising results. Our system, which leans heavily into sentence splitting, achieves
very low FKGL and largely fluent output. Future work can add insight and interest by incorporating
variations on scoring and finer-grained simplifying actions.

8 Contributions

This was an individual project.
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9 Appendix

9.1 ASSET corpus

Original Text Adjacent counties are Marin (to the south), Mendocino (to the north), Lake
(northeast), Napa (to the east), and Solano and Contra Costa (to the southeast).

Example Human
Simplification

Neighboring counties are Marin, Mendocino, Lake, Napa, Solano, and Contra
Costa.

GPT-3 Zero-Shot
Simplification

The counties that are next to Sonoma County are Marin County (to the south),
Mendocino County (to the north), Lake County (northeast), Napa County (to the
east), Solano County, and Contra Costa County (to the southeast).

Table 5: An example from augmented ASSET validation set. Original and simplifications.

9.2 TurkCorpus

Original Text His travel writings and his extensive diaries and correspondence have also been
published.

Example Human
Simplification

His writings from his travels, large amounts of diaries and letters have been
published as well.

Table 6: An example lexical simplification extracted from TurkCorpus. Original and simplification.

9.3 Wiki-BM

Original Text After Pinocchio accidentally sets Lorenzinis theatre on fire, Lorenzini changes
career and begins luring unruly children to pleasure island, where they inevitably
drink cursed water which turns them into donkeys.

Example Human
Simplification

Pinocchio accidentally sets Lorenzini’s theatre on fire. Afterwards, Lorenzini
changes his career. Lorenzini begins luring unruly children to Pleasure Island.
At Pleasure Island, the unruly children inevitably drink cursed water. The cursed
water turns the children into donkeys.

Table 7: An example from Wiki-BM Split-and-Rephrase corpus. Original and simplification.

9.4 CoLA

Grammatical Bill rolled out of the room.
The gardener watered the flowers flat.
Bill broke the bathtub into pieces.
The professor talked us into a stupor.

Not Grammatical They drank the pub.
The professor talked us.
Harry coughed us into a fit.
They caused him to become angry by making him.

Table 8: Example sentences labeled grammatical and not grammatical.
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9.5 Metrics

Figure 2 - Benchmark Original vs Simplified Metrics. Each dot represents a text.

9.6 Flesch-Kincaid Grade Level (FKGL)

FKGL is a score that relies on average sentence lengths and number of syllables per word. In earlier years
of automated text simplification, the score was criticized for failing to take account of 1) grammatical errors
introduced by automated systems and 2) semantic drift from an original text. In our view it remains a solid choice
for a simplicity score in a setting where grammaticality is assured and semantic drift is separately measured.

FKGL = 0.39

(
totalwords

totalsentences

)
+ 11.8

(
totalsyllables

totalwords

)
− 15.59

9.7 McAlpine EFLAW

The McAlpine EFLAW (McAlpine, 1997) is a simplicity score recommended by Rachel McAlpine in an article
titled "From Plain English to Global English." The score is based on the insight that excessive use of "miniwords"
(common words of one, two, or three letters) is a hallmark of convoluted structure and wordiness. Simpler
texts (e.g., with sentences following Subject-Verb-Object) use few mini-words. The EFLAW score is defined
as (W+M)/S where W = the number of words in a text, M = the number of mini-words in a text, and S = the
number of sentences in a text. A score in the range of 1-20 generally indicates easy to understand text, while a
score over 30 reflects confusing text. We believed that incorporating EFLAW to penalize mini-words might have
a beneficial effect towards learning an effective Word Drop policy.

9.8 EASSE Metrics

We refer to Alva-Manchego (2019) for additional description of the EASSE system and the metrics it measures
including BLEU, SARI, proportion of exact copies, and lexical complexity. On lexical complexity, the paper
notes it is "computed by taking the log-ranks of each word in the frequency table. The ranks are then aggregated
by taking their third quartile."

9.9 DQN Architecture Overview

https://web.stanford.edu/class/cs234/CS234Win2019/slides/lnotes6.pdf
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9.10 Results, 100-Game Average Score

Figure 3 - 100-Game Average Score Improvement vs Game Moves
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