
Multivariate Time Series Forecasting of Air Pollution
Using Deep Learning

Abhishek Kumar
Civil and Environmental Engineering Department

Stanford University
abhi2947@stanford.edu

Ifdita Hasan Orney
Computer Science Department

Stanford University
ifdi1101@stanford.edu

Josue Solano-Romero
Computer Science Department

Stanford University
jsolanor@stanford.edu

Link to Github repo

1 Introduction

Air Pollution is one of the most serious environmental issues facing the world today that severely
affects human health. In 2019, 99% of the world population resided in places that violated the air
quality standards set by WHO (1). It is considered as the fourth greatest overall risk factor affecting
human health globally (2). Among various air pollutants, fine particulate matter with diameter less
than or equal to 2.5 micrometers (PM2.5) is the major culprit (3). This project attempts to develop a
model that forecasts the PM2.5 concentration in four time steps ahead at different locations of a city
to make timely warnings and mitigate the occurrence of severe air pollution events. The input of the
model are the concentration of 8 air pollutants (PM2.5, PM10, CO, SO2, NO, NO2, Ozone, NOx) and
5 meteorological parameters (Average Temperature, Wind Direction, Atmospheric Pressure, Solar
Irradiance, Relative Humidity) of last D hours at a particular station of a city. The model outputs the
PM2.5 concentration of a station, in advance, sequence at time t+ 2, t+ 3, t+ 4, and , t+ 5 hours,
where t is the current hour.

2 Related work

In recent years, there have been many efforts to apply deep learning models to improve the accuracy
of PM2.5 concentration predictions. Given the complexity and many factors contributing to air
quality prediction, it’s difficult to obtain satisfactory results with a single prediction model (3). In
general, efforts have shown hybrid deep learning architectures prove to be more effective than single
deep learning models. For instance, Zhang, 2020 (3) and Faraji, 2022 (4) both use spatial-temporal
methods that use CNN and GRU to predict PM2.5 concentrations. CNN is used to extract spatial
features and GRU is used to extract time characteristics (5).

In other approaches, models preform data processing before feeding it to a prediction model. For
example, in (Lin, 2021)(5), the authors use GRU to preform predictions, but they create different
architectures based on the data process used before inputting the data into a GRU. In their GRUST13d
model, they split spatial-temporal data into four categories according to the four seasons for the
year. Lin, 2021(5) data process step is a good approach to improving prediction performance without
adding complexities to the architecture. We plan to follow a similar approach in our models.

CS230: Deep Learning, Fall 2022, Stanford University, CA.

https://github.com/JosueSolanoR/CS230.git


3 Data Pre-Processing Methods

Delhi, being one of the worst air polluted cities of the world(6), is chosen for the project. The data
of 38 air monitoring stations of one year from 01 August 2021 to 31 July 2022 at a frequency of
one hour has been web-scrapped from the website of Central Pollution Control Board, India(7).
The data-set includes 8760 records of concentration of 8 air pollutants (PM2.5, PM10, CO, SO2,
NO, NO2, Ozone, NOx) and 5 meteorological parameters (Average Temperature, Wind Direction,
Atmospheric Pressure, Solar Irradiance, Relative Humidity) of each station. Any station with any
feature column having more than 13% of the missing values has been dropped. In this consideration,
only 50% of the stations have been qualified for the model development.

We employed ’Forward Fill’ followed by ’Backward Fill’ techniques to handle the missing values
in the remaining stations. Each station data has been converted into supervised form for model
development. Further, all supervised form 19 stations data have been merged and shuffled, and then
normalized input features with min-max technique. We consider 90% of the shuffled data (159,709
examples) to train the network, while 5% (8318 examples) each for validation and testing purposes.

4 Learning Methods

We employed LSTM and CNN-LSTM based deep learning models to forecast PM2.5 concentration.
The intuition behind choosing these two kind of models is that particulate matter concentration
mainly depends on both spatial and temporal features, and these models are well know to extract
information from the data. LSTM has good processing ability for time series data. It can handle
multiple input variables perfectly and correlate the contextual information well.

4.1 LSTM

LSTM is a special kind of RNN, which shows outstanding performance on a large variety of problems.
LSTMs were designed specifically to overcome the long-term dependency problem faced by RNNs
due to the vanishing gradient problem. LSTMs have feedback loop which enables them to retain
useful information about previous data points to process the new data points. LSTM uses three gates:
Forget gate, Input gate, Output gate. The forget gate decides which pieces of the long-term memory
should now be forgotten (have less weight) given the previous hidden state and the new data point in
the sequence. Input gate determines what new information should be added to the networks long-term
memory (cell state), given the previous hidden state and new input data. Output state decides and
outputs the new hidden cell.

4.2 CNN-LSTM

The CNN-LSTM is the integration between the CNN and the LSTM. It combines the advantages of
both of the models, leading to great breakthroughs in video recognition and classification, natural
language processing and other fields.In the hybrid model of CNN-LSTM, we use the CNN model to
extract the spatial features and the LSTM model for interpreting the data across the time steps.

5 Experiments

In this project, we designed, trained, and evaluated 3 different architectures each of LSTM and
CNN-LSTM as depicted in Table 2. In total, we ran experiments on 4 different models based on the
number of output time steps. We trained each of the architectures that we designed with approximately
160, 000 examples with different time lags. We complied the model with Adam optimizer and Mean
Absolute Error loss function. Each experiment tested one of several hyper-parameters such as the
number of units in each layer, dropout probabilities, learning rates, and the number of input and output
steps. Table 2 displays our best results for each model architecture on {T + 2, T + 3, T + 4, T + 5}
output steps.

In each experiment, we trained models locally on 19 air monitoring stations. In total, we ran 130+
different instances of our models. Each instance had a training time ranging between 10min-6hrs on a
standard computer. We set the baseline for our hyper-parameters by tuning a one-layer LSTM model.

2



5.1 LSTM

In our initial LSTM experimentation, we found the best learning rate to be 0.005. In one of our
experiments, we used a one-layer LSTM with 80 units trained on 75 epochs. The lowest RMSE was
found at 0.005 (1). After settling on our learning rate, we experimented with the number of units.
Ultimately, we found that models with a higher number of units perform better than lower values.
With our dataset, we found the best unit size to be around 200 units.

Table 1: Example of experiments run on learning rates

Learning Rate Forecast Time RMSE - Train RMSE - Test
0.001 T + 2 13.60 20.60
0.003 T + 2 13.07 20.03
0.005 T + 2 12.67 19.83
0.007 T + 2 13.03 20.23
0.1 T + 2 20.65 28.31

We also saw an improvement in RMSE as we increased the number of epochs. Although the run-time
to train our model increased significantly, ≈ 3hrs on a standard laptop. Overall, we settled on a
learning rate of 0.005, 200 units, and a dropout rate of 0.5. Using these parameters, we experimented
with LSTM - 2L and LSTM - 3L models and tuned parameters such as the number of in and out steps.
The results of our experiments are found in Table 2.

5.2 CNN-LSTM

In our experimentation, we tuned parameters for our CNN L1 - LSTM L1. Initially, we used the same
hyperparameters from our LSTM-L1 model and focused on finding the best parameters for the CNN
layer. We found that the best input size for our CNN layer is around 24. That is, the best time step to
consider in each example is 24 hours. We also found the best number of sub-sequences in our CNN
layer to be 2, which gives us 12 output steps per sub-sequence.

We settled on a CNN-LSTM model which consisted of 100 units in the CNN layer and 200 units in
the LSTM layer. We also decreased the dropout rate to 0.1 since a dropout rate of 0.5 underfits our
data. We also included max pooling after the CNN layer to add some regularization in addition to the
0.1 dropout. We also performed similar experiments on other CNN-LSTM architectures, following
the baseline for CNN L1 - LSTM L1.

6 Results and Discussions

Table 2 summarizes the best test RMSE of 6 different architectures of LSTM and CNN-LSTM with
varying number of layers that are designed to forecast PM2.5 concentration of a particular station in
advance at 4 consecutive time steps of one hour each. The simple architectures with lesser layers,
in general, tend to perform either better or almost similar to the complex models for a combination
of varying sizes of input time steps. For near time steps prediction, particularly for 2 and 3 hours,
1 - Layered LSTM outputs better results than any other structurally complex models made for this
study. However, all architectures perform similar to each other in terms of 4 and 5 hours forecasting.
Additionally, higher error is observed in the far away time steps than nearby prediction in case of all
models.

Table 2: Summary of Test RMSE(ug/m3) Scores on Different Trained Model

Time LSTM1 LSTM2 LSTM3 CNN1 - LSTM1 CNN1 - LSTM2 CNN2 - LSTM1
T + 2 12.72 22.21 22.49 17.54 24.24 19.80
T + 3 20.48 24.49 24.29 23.47 24.56 24.44
T + 4 24.01 25.28 27.24 25.83 28.74 28.74
T + 5 27.41 27.98 26.99 26.65 29.21 29.64

LSTM1: LSTM - 1 Layered, LSTM2: LSTM - 2 Layered, LSTM3: LSTM - 3 Layered, CNN1 - LSTM1: CNN -
1 Layered, LSTM - 1 Layered, CNN2 - LSTM1: CNN - 2 Layered, LSTM - 1 Layered, CNN1 - LSTM2: CNN -
1 Layered, LSTM - 2 Layered

3



It has been observed that adding more number of input time steps for prediction in the simpler models
like LSTM - 1 layered, either enhances the performance insignificantly or degrades the performance.
On the other hand, increasing number of input time steps on more complex models result in some
unexpected figures. Figure 1 shows two instances of 3 - layered LSTM architectures that show weird
results when trained with larger input time steps. The model on the left when feed with 8 input time
steps does not improve even iterated for long duration, while the model on the right when input with
24 input time steps for prediction in 4 hours ahead, the loss does not appear to decrease for longer
duration and then starts to increase after certain iterations. This behaviour is possibly due to the less
dependence of particulate matter concentration on the very long past hours conditions, rather more
depend on last 4 - 5 hours of meteorological conditions and other pollutants concentration.

Sheng et al.(8) also observed similar results indicating that a tiny time lag does not guarantee sufficient
long-term memory input, while a large time lags does not necessarily improves the performance.
Since large input time steps require more time to train and computationally expensive, it is essential
to choose an optimum number for the better performance. In this study we observed that most of the
instances of the trained models give better results for 4 and 5 input time lags.

On comparing LSTM and CNN-LSTM holistically, LSTM has slightly better results than CNN-
LSTM at each time forecast. The probable reason could be that the dataset applied is integrated
time series data, and then it is converted into a supervised dataset, indicating that CNN may not be
skilled at processing time-series data. Utilizing CNN to handle the data initially destroys the inherent
attributes of the data, which has a certain impression on the extraction of data features by LSTM
following.

Figure 1: 3 - Layered LSTM Models with large input time steps

7 Evaluation - IFDITA + ABHI

In our evaluation, we used 5% of our data set. While evaluating our model, we recorded the trends
and similarities between predicted and observed data. Evaluation parameter we used is the Root
Mean Square Error (RMSE). RMSE is the metric of disparity between the values a model predicts
from the modeled environment and the observed.

RMSE =
√

1
m

∑m
t=1(yo(t)− yp(t))2, where yo = observed value and yp = simulated value

RMSE compares an expected value to an observed or known value. This is a fair indicator of error in
overall prediction. RMSE represents deviation, hence lower the value of RMSE, higher the accuracy
of the model.

We have compared the performance of our best architectures of each time steps with the two existing
state-of-the-art time series models to verify the effectiveness of our designed novel architectures. As
can be viewed from Table 3, the best models on each time step have better results than Multi-Output
and Multi-Index of Supervised Learning Model (MMSL)(8), but 5 hours forecasting model has more
RMSE than a deep spatial-temporal ensemble (STE) model developed by Wang et al.(9)

4



Table 3: Comparison of prediction performance between our models and other models

Model (PM2.5) Forecast Time RMSE - Others RMSE - This Study
MMSL(8) T + 2 20.22 12.72

T + 3 23.65 20.48
T + 4 26.02 24.01
T + 5 29.76 27.42

STE(9) T + 5 22.97 27.42

8 Conclusion and Future Works

This study attempts to explore different LSTM and CNN-LSTM architectures to forecast multiple
outputs of PM2.5 concentration in advance at various time steps of a monitoring station in a city,
utilizing various air pollutants concentration and meteorological parameters data of Delhi, the capital
city of India. The best architectures, especially the models that output fewer time steps, perform
better than some of the existing baseline models. However, some improvements are still required in
the models that forecast high number of output time steps (like the models that forecast 4 and more
time steps) to achieve the state-of-the-art results.

Given more time, we would like to explore different prepossessing data techniques. For instance,
to train our CNN-LSTM models, we used season features (Summer, Monsoon, Post-monsoon, and
Winter). We grouped all stations into one dataset and trained on a shuffled dataset. Instead, we would
like to sort our data based on time to mimic real-world performance. We would train on examples
before some date and use all examples after this date in our validation and test sets.

Since our dataset only spans one year, we decided to use random shuffling because of concerns with
biases in our data. If we were to split by time, there would be more training examples labeled winter
(Dec-Apr). Furthermore, applying some SQL analysis, the average PM2.5 across all seasons is about
145ug/m3 (winter), 60ug/m3 (summer), 40ug/m3 (monsoon), and 165ug/m3 (post-monsoon). If we
used a 90/5/5 split, our validation and test sets would come from summer and monsoon seasons.
Therefore, our training examples would include examples that have higher PM2.5 values compared
to the validation and training.

Additionally, we would like to consider data from other cities as well for the model development to
make the model more general to forecast PM2.5 concentration at any location of the globe.

9 Contribution

All members contributed equally to the project.

References
[1] “Ambient (outdoor) air pollution,” Sep 2021. [Online]. Available: https://www.who.int/

news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

[2] T. Yang, K. Zhou, and T. Ding, “Air pollution impacts on public health: Evidence from
110 cities in yangtze river economic belt of china,” Science of The Total Environment, vol.
851, p. 158125, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S004896972205224X

[3] Q. Zhang, S. Wu, X. Wang, B. Sun, and H. Liu, “A pm2.5 concentration prediction
model based on multi-task deep learning for intensive air quality monitoring stations,”
Journal of Cleaner Production, vol. 275, p. 122722, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0959652620327694

[4] M. Faraji, S. Nadi, O. Ghaffarpasand, S. Homayoni, and K. Downey, “An integrated 3d
cnn-gru deep learning method for short-term prediction of pm2.5 concentration in urban
environment,” Science of The Total Environment, vol. 834, p. 155324, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0048969722024172

5

https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.sciencedirect.com/science/article/pii/S004896972205224X
https://www.sciencedirect.com/science/article/pii/S004896972205224X
https://www.sciencedirect.com/science/article/pii/S0959652620327694
https://www.sciencedirect.com/science/article/pii/S0048969722024172


[5] C.-Y. Lin, Y.-S. Chang, and S. Abimannan, “Ensemble multifeatured deep learning models
for air quality forecasting,” Atmospheric Pollution Research, vol. 12, no. 5, p. 101045, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S1309104221001057

[6] D. Pruthi and Y. Liu, “Low-cost nature-inspired deep learning system for pm2.5 forecast
over delhi, india,” Environment International, vol. 166, p. 107373, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0160412022003002

[7] “Central control room for air quality management - all india,” Oct 2022. [Online]. Available:
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data

[8] D. Seng, Q. Zhang, X. Zhang, G. Chen, and X. Chen, “Spatiotemporal prediction of air
quality based on lstm neural network,” Alexandria Engineering Journal, vol. 60, no. 2,
pp. 2021–2032, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1110016820306438

[9] J. Wang and G. Song, “A deep spatial-temporal ensemble model for air quality
prediction,” Neurocomputing, vol. 314, pp. 198–206, 2018. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0925231218307859

6

https://www.sciencedirect.com/science/article/pii/S1309104221001057
https://www.sciencedirect.com/science/article/pii/S0160412022003002
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data
https://www.sciencedirect.com/science/article/pii/S1110016820306438
https://www.sciencedirect.com/science/article/pii/S1110016820306438
https://www.sciencedirect.com/science/article/pii/S0925231218307859
https://www.sciencedirect.com/science/article/pii/S0925231218307859

	Introduction
	Related work
	Data Pre-Processing Methods
	Learning Methods
	LSTM
	CNN-LSTM

	Experiments
	LSTM
	CNN-LSTM

	Results and Discussions
	Evaluation - IFDITA + ABHI
	Conclusion and Future Works
	Contribution

