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I. INTRODUCTION

We train models to predict corrosion-induced cracking,
which can then be used in digital twinning 1. The models
take in corrosion patterns and concrete material properties and
outputs whether there is a crack on the concrete’s surface. We
use a combination of convolutional neural networks and fully-
connected neural networks to handle our multi-modal inputs.

There is a need for deep learning here because although
existing modelling techniques are accurate, they are too com-
putationally expensive, taking 12hrs to run on a 5cm diameter
sample. Concrete is usually repaired when cracking (usually
driven by corrosion) reaches the surface; by being able to
predict this quickly at a large scale, the need for tedious visual
inspection of large bridges/buildings is negated.

II. RELATED WORK

To our knowledge, there has been no prior work using
corrosion patterns as inputs for any task, as well as no prior
work predicting surface cracking from any inputs [1]. The
closest similar work was done by Boukhatem et al., which
uses only 90 experimental data points to predict time-to-
cracking based on concrete material properties [2]. Several
other projects use concrete material properties to predict other
outputs, including compressive strength [3], carbonation depth
[4], and rebar corrosion level [5].

Parts of our work take inspiration from projects outside of
civil engineering:

We use 1D convolution to learn from corrosion depth inputs.
In the literature, 1D convolution is commonly applied to time-
series [6], signal processing [7], and hyper-spectral imaging
[8]–[10] applications.

Our model combines two different types of input features
(corrosion patterns and concrete properties). One method to
handle multimodel input data is concatenating features or
feature representations, then feeding the result into deeper
layers. Miller et al. combined images and text for image
classification [11]. Venugopalan et al. combined MRI images,
genetic sequences, and clinical test data for detection of
Alzheimer’s disease stage [12].

III. DATASET

A. Dataset Overview

The dataset consists of two types of input features:

1A digital twin is a virtual model of a real-world physical object

1) A vector of corrosion depths in R337x1, representing the
amount of corrosion along the z-axis of a vertical cylindrical
rebar. We use a 1D representation since corrosion at two points
at the same height (z) but different angle (θ) are usually very
similar, relative to corrosion between two points at different
heights.

2) Four additional continuous features representing proper-
ties of the concrete itself:

• Rebar Radius: The radius of the single reinforcing bar
through the concrete cylinder, in meters.

• Concrete Cover: Thickness of the concrete covering the
reinforcement, in meters.

• Tensile Strength: The strength of the concrete in tension,
in mega-pascals.

• Water-to-cement Ratio: The proportion of water to ce-
ment in the concrete mix.

Figure 8 (appendix) shows the signal distributions for these
signals, and provides some intuition on how they relate to
concrete cracking.

B. Data Generation

To generate the data, first we generate corrosion patterns
using COMSOL multiphysics, a finite element analysis, solver,
and simulation software package. To allow for faster data
generation, it was assumed that corrosion is constant radially
and only varies along the length of the reinforcement.

Once the corrosion patterns have been determined, they are
inputted into the matlab coupled finite element lattice model
(FEM). The coupled model first assigns random parameters to
the four additional continuous features (rebar radius, concrete
cover, tensile strength, and water-to-cement ratio). Then it
meshes the concrete cylinder and applies the corrosion load
to determine the cracking pattern. From the crack pattern, we
compute the binary label for whether any crack has reached
the surface. Figure 3 shows a visualization of this pipeline.

This process is computationally expensive, so data gener-
ation has been a slow process, taking around 12 hours to
generate a single training example. To generate our dataset, we
had to run this pipeline continuously across multiple machines.
At the time of writing, our dataset contained 1,982 samples.

C. Data Preprocessing

After running COMSOL and FEM to generate the data, we
extract the outputs from the simulations, process/transform



Fig. 1. Input (corrosion pattern) and Output (crack pattern) of FEM.

Fig. 2. Example positive (top) and negative (bottom) corrosion patterns, represented as 337x1 dimensional vectors.

corrosion patterns, join the corrosion patterns with the cor-
responding concrete features, and extract/append the target
labels.

D. Data Analysis

The dataset consists of 37.35% positive (surface cracking)
and 62.65% negative samples. In the real world, positive
samples would be much more rare. However, for our dataset
we chose the data generation parameters to dramatically up-
sample positive cases.

A typical corrosion pattern has a low baseline corrosion
level, with concentrated regions of high corrosion. Figure 2
shows some example corrosion patterns in 1D representations.

Although individual samples are quite erratic, in general
rebars with more corrosion are more likely to see concrete
cracking. This is observed in our training data and shown in
Figure 3.

IV. LEARNING METHODS

A. Data Splitting

We split the data into 60% train / 20% validation / 20% test
sets. Due to the scarcity of data, after selecting hyperparam-
eters with the validation set, we train one additional model
on the combined train+validation data (80%) before reporting
results on the test set. This yielded a moderate improvement
on test set performance compared to just training on the 60%
train set.

Fig. 3. Maximum and mean corrosion depth distributions.

B. Training Objective

Early on, our training set was heavily biased towards
negative (no surface crack) examples, so we trained with a
weighted binary cross-entropy (BCE) loss with higher weights
on positive samples:

L(y, ŷ) = − 1

nx

nx∑
i=1

(α · y(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i)))

(1)
We set α = 1 in the baseline model. Later on, we addressed
the data imbalance by modifying the data generation pipeline
to upsample concrete properties that were more likely to result
in cracking, and switched to an unweighted BCE loss (α = 1).



C. Baseline Model Architecture
For our baseline model, which we denote Conv1-FC1, we

first pass the corrosion depth input through a 1D convolution
with a single kernel of size 20x1, followed by ReLU and max
pooling with a kernel and stride of 16. This reduces the (337
x 1) corrosion depth input to a (19 x 1) vector. This is then
concatenated with the (4 x 1) vector of concrete properties, and
then passed through a fully-connected layer with one output
node. Finally, a sigmoid activation is applied to get the final
model prediction.

Figure 4 is a graphical representation of this model:

Fig. 4. Conv1-FC1 Network Architecture

Table I shows the performance of the baseline. When we
first trained the baseline model, we had only generated 220
training samples, so we trained the baseline model on the
entire dataset at the time. Test set metrics were added retroac-
tively. We observe the small dataset resulted in overfitting.

TABLE I
BASELINE MODEL PERFORMANCE

Train Loss Train F1 Score Test Loss Test F1 Score
Conv1-FC1 0.220 0.935 0.777 0.543

D. Increasing Dataset Size
The largest gains in model performance came from adding

more training data. Table II shows the effect of dataset size on
model performance for the baseline model. A similar behavior
was observed for all other models we tried. The last row in
Table II was trained on the train+validation combined set.

TABLE II
EFFECT OF DATASET SIZE ON BASELINE MODEL

Dataset Size Train Loss Train F1
Score Test Loss Test F1

Score
220 0.220 0.935 0.777 0.543
660 0.301 0.850 0.355 0.819
1268 0.280 0.865 0.316 0.851
1585 0.306 0.885 0.314 0.865

E. Data Normalization
In our baseline model, we used the standard feature normal-

ization technique, where we compute the mean and standard
deviation for each input feature independently, and then scale
each feature to have 0 mean and 1 variance.

x̃i =
xi − µi

σi
(2)

Although this works reasonably well for concrete property
inputs, this performs poorly on corrosion depth inputs. Instead
we implemented custom normalization, where the mean and
standard deviation was computed across the entire corrosion
depth vector across all samples. Then all points were scaled
by these values. This type of normalization resulted in signifi-
cantly improved model performance. Table III shows the effect
of this normalization on the Conv1-FC1 (baseline) model
architecture, trained on 1,268 training samples.

TABLE III
EFFECT OF DATA NORMALIZATION

Train Loss Train F1
Score Test Loss Test F1

Score
Standard
Normalization 0.578 0.556 0.540 0.615

New
Normalization 0.280 0.865 0.316 0.851

F. Deeper Models
With the larger datasets, the baseline model showed low

variance. We attempted to decrease bias by adding more layers
to the model. We tried several model architectures following a
similar template: Corrosion patterns are passed through one or
more layers of convolution blocks (1D Convolution → ReLU
→ 1D MaxPool). Concrete properties are passed through one
or more fully-connected layers. The two outputs are concate-
nated and then passed through one or more fully-connected
layers. Figure 5 shows this general model architecture.

Fig. 5. General Network Architecture

We use the following naming convention: If X is the number
of convolution blocks, Y is the number of fully connected



layers preceding concatenation, and Z is the number of fully
connected layers after concatenation, we denote this model as
ConvX−HY−FCZ (”H” for ”hidden fully connected”).

We experimented with multiple model architectures, and
for each architecture, we used random search to tune hy-
perparameters such as convolution/pooling kernel sizes, con-
volution/pooling strides, and fully-connected layer sizes. In-
terestingly, most of these deeper models did not decrease
training loss, and thus yielded no improvements on test set
performance. One possible explanation is that we are close to
the optimal model given the current dataset (i.e. most of the
remaining losses are mistakes in simulation resulting in mis-
labled samples). If so, the only way to improve performance
is to collect more and/or higher-quality training data.

TABLE IV
CONV1 - H1 - FC1 MODEL PERFORMANCE

Conv
Kernel
Size

Pool
Stride

Hidden
Layer
Size

Train
Loss

Train F1
Score

Test
Loss

Test F1
Score

8 8 4 0.243 0.881 0.297 0.853
8 8 8 0.237 0.890 0.246 0.878
8 8 16 0.240 0.891 0.304 0.848

TABLE V
CONV1 - H1 - FC2 MODEL PERFORMANCE

Output FC
Layer Sizes

Train
Loss

Train F1
Score

Test
Loss

Test F1
Score

8, 1 0.234 0.890 0.294 0.857
16, 1 0.230 0.881 0.255 0.884
32, 1 0.238 0.880 0.301 0.853
64, 1 0.237 0.879 0.296 0.854
128, 1 0.233 0.889 0.261 0.850
256, 1 0.234 0.886 0.297 0.854

TABLE VI
CONV2 - H1 - FC1 MODEL PERFORMANCE

Conv
Kernel
Sizes

Output FC
Layer Sizes

Train
Loss

Train F1
Score

Test
Loss

Test F1
Score

8, 8 1, 8 0.257 0.871 0.281 0.836
8, 8 1, 4 0.241 0.881 0.331 0.838
16, 8 1, 8 0.245 0.884 0.293 0.857
8, 8 4, 2 0.268 0.835 0.269 0.853
8, 8 4, 2 0.251 0.878 0.254 0.873

G. Data Augmentation

Since model performance seemed strongly correlated with
dataset size, we tried to artificially increase the dataset size
via data augmentation. We implemented 3 types of data
augmentation:

• Flipping: Since corrosion patterns are symmetric and
none of the concrete property features depend on the
corrosion pattern, we can flip the 1D corrosion vector.

• Adding noise: We can add a small random Gaussian noise
to all input features independently.

• Monotonic scaling: This utilizes the fact that increasing
corrosion (multiplying the vector by some constant > 1)
can only increase the likelihood of cracking, and vice
versa. We use the existing label to either scale the

corrosion depth inputs up or down, while maintaining
correctness of the label.

We generated 10,000 additional samples by randomly sam-
pling from the above 3 categories. Experimental results (Table
VII) did not show an improvement in performance from data
augmentation. This could have been due to poor tuning of data
augmentation parameters, such as adding too much noise or
scaling too much.

TABLE VII
DATA AUGMENTATION ON CONV1-H1-FC1 MODEL

Train Loss Train F1 Score Test Loss Test F1 Score
Normal
Data 0.265 0.859 0.259 0.868

Augmented
Data 0.239 0.870 0.260 0.851

H. Hyperparamter Tuning

We use RayTune [13], [14] for parallelized asynchronous
hyperparameter search. For each architecture, we train 100
models with random hyperparameters, trained on the 60%
training set, and select the best hyperparameters based on the
20% validation set. Using a classification threshold of 0.5, we
measure validation loss, precision, recall, f1 score, and AUC
for each model. Experimental results showed that, with the
exception of loss, the other metrics mostly are mostly aligned
on which model is better. We chose to maximize f1 score as
the hyperparameter tuning objective.

We tried two search schedulers.

• Asynchronous Successive Halving Algorithm (ASHA)
[15] speeds up the search by aggressive early stopping
of low-performing runs.

• Population Based Training (PBT) [16] chooses the next
hyperparameters to try based on results from previous
runs, as opposed to randomly.

Since this pipeline is computationally expensive, we only
ran full searches for a handful of the model architectures we
tried. For the remaining models, we set the hyperparameters
based on smaller searches and results from earlier experiments.
Table VIII shows the hyperparameter ranges we searched over
for one model architecture, and the best hyperparameters.

TABLE VIII
BEST HYPERPARAMETERS FOR CONV1-H1-FC1 MODEL

Hyperparameter Search Range Selected
Hyperparameters

Learning Rate
Log Uniform
(10−4 : 10.0) 0.0035

L2 Regularization Amount
Log Uniform
(10−5 : 10−2) 0.0134

Optimization Algorithm Adam,
RMSprop, SGD RMSprop

Batch Size 64, 128, 256, 512 128
Convolution LayerKernel Size 8, 16, 32 32
Pooling Stride 4, 8, 16 4
Hidden Layer Size 8, 16, 32 8



I. Transfer Learning

Since we had access to a dataset of 84,834 corrosion
pattterns (no concrete property features, and no labels), we
had initially planned to use transfer learning, to learn a
dense representation of corrosion patterns and apply it to our
supervised learning application. However, after processing the
unlabeled dataset, we noticed it had a significantly different
distribution from our labeled data, as shown in Figure 9
(appendix), so we did not pursue this further.

V. RESULTS AND DISCUSSION

All of the model architectures we tried, including the
baseline architecture, had similar results when trained on our
largest training dataset with custom feature normalization. Our
best performing model, by a small margin, was Conv1-H1-
FC1 Model with the parameters specified above, with a test
F1 score of 0.891. Table IX contains detailed metrics for this
model.

TABLE IX
CONV1-H1-FC1 TEST SET METRICS

Test Accuracy 0.922 Confusion Matrix

Test Precision 0.927 Prediction=
Positive

Prediction=
Negative

Test Recall 0.858 Label=
Positive

127
(31.99%)

21
(5.29%)

Test F1 Score 0.891 Label=
Negative

10
(2.52%)

239
(60.20%)

Test AUC 0.955

Fig. 6. ROC Curve

For most of our project, we used a fixed classification
threshold of 0.5 to make a binary classification decision from
the model output. For this application, we prefer a high-recall
model, since false negatives (failing to identify a crack) pose
a greater risk than false positives (requiring visual inspection).
We can increase recall at the cost of precision through tuning
the classification threshold. Figure 6 shows the ROC curve for
this model. Table X shows test set metrics with an aggressively
lower threshold. The results are quite promising; we can
achieve near-perfect recall and still maintain 44.5% precision.
If the test set metrics generalizes to real-world data, we would

be able to identify almost all surface cracks, and only require a
bit more than twice as many inspections compared to a perfect
(100% accuracy) model.

TABLE X
CONV1-H1-FC1 MODEL WITH CLASSIFICATION THRESHOLD=0.01

Test Accuracy 0.537 Confusion Matrix

Test Precision 0.445 Prediction=
Positive

Prediction=
Negative

Test Recall 0.993 Label=
Positive

147
(37.03%)

1
(0.25%)

Test F1 Score 0.651 Label=
Negative

183
(46.10%)

66
(16.62%)

A. Qualitative Results

To qualitatively evaluate the results, visualizations of the
cracking patterns were created for some false negative (Figure
10, appendix) and false positive (Figure 11, appendix) exam-
ples. It was observed that in almost all cases where a false
negative occurred, the crack barely made it to the surface. On
the other hand, false positives contain multiple cracks very
close to the surface, without actually reaching the surface.

The model was also tested on real reinforced concrete
samples from experimental data, as shown in Figure 7. We had
3 such experimental samples- two positive and one negative.
Inputting this data into our best model resulted in all examples
being classified as having no surface cracking (33% accuracy).
It was determined this was because the data from these
experiments was outside of the distribution that the model was
trained on.

Fig. 7. Experimental Sample

VI. CONCLUSION / FUTURE WORK

In this project, we trained a multi-model model which pre-
dicts surface cracking based on corrosion patterns on a rebar,
and properties of the surrounding concrete. Since large datasets
for concrete cracking do not exist, we collected training data
through simulations. We used custom data normalization, tried
several model architectures, and used random search to tune
hyperparameters. The largest model improvements came from
data normalization and increasing training dataset size.

We observed that the amount of data played a big role in
model performance, so as future work, we will continue to
generate more data from simulations, and expand the range
of inputs so that the model can be applied to less common
inputs, such as the experimental sample we tested on.
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Fig. 8. Concrete property signal distributions.
Rebar Radius: Larger rebar radius can result in cracking initiating sooner.
Concrete Cover: Generally, thicker concrete cover is less likely to result in surface cracking.
Tensile Strength: Cracking occurs when the internal pressure of the corrosion product exceeds the tensile capacity of the
concrete, so a lower tensile strength results in more extensive cracking.
Water-to-Cement Ratio: A higher water to cement ratio results in a more porous cement matrix, which can absorb some of
the corrosion product, lessening the internal pressure and subsequently reducing cracking.

Fig. 9. Max corrosion depths for unlabeled, positive, and negative samples
The unlabeled dataset (green) had much lower corrosion depth values compared to both the positive and negative labeled
examples. We also observed a significant number unlabled examples which had almost 0 corrosion at every point.



Fig. 10. False Negative Examples
False negative examples usually show moderate cracking at a single small area of the concrete. For many examples, internal

cracking is minimal on most other regions of the concrete.

Fig. 11. False Positive Examples
False positive examples show significant internal cracking, even though no one crack made it to the surface.
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