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1 Abstract

This project is aimed at using the Hamiltonian Neural Network (HNN) to solve problems in dynamics,
as an alternative to the conventional way of solving systems of partial differential equations. The
HNN is trained from observations of dynamic systems to satisfy a loss function representing the
governing law of Hamiltonian Mechanics, and is evaluated by the accuracy of the predicted trajectory
with respect to the ground truth. Results show that the HNN solves single degree of freedom (DOF)
and multi-DOF problems effectively and is much more accurate than the baseline model, and it also
shows robustness to noise in the dataset.

2 Introduction

The Hamiltonian Neural Network is known to be good at modeling the response of dynamic sys-
tems[1], typical examples of which include the classic mass-spring problem, pendulums, two-body
gravitational systems, etc. There have also been works on improving the HNN, such as making the
learning process self-supervised[2], adaptable to variable changes[3], etc. Nevertheless, it is noticed
that the scope of problems is currently limited to rigid bodies or mass points. In an attempt to extend
the application of HNN, the topic of this project is to study the Hamiltonian Neural Networks in
the regime of deformable solids. We divided the project into three steps: replicate the work done
in [1] about single pendulum systems (not shown), extend the framework into double pendulum
systems with tie connections between each pendulum, then finally extend the framework into double
pendulum systems with spring connections.

3 Dataset

The dataset will be generated mostly from data calculated from computer simulations, or analytical
results if the problem is analytically solvable. For each sample problem, we will be generating 50
different trajectories each frames and a total of 1000 frames, which is similar to the scale of the dataset
in [1]. Each data point in the dataset will come in the form of (p, q), where q = (q1, q2, ..., qN )
denotes the canonical coordinates of the set of objects in the system, and p = (p1, p2, ..., pN )
represents their canonical momentum (N being the number of objects in the system). And the labels
of the data will be dq

dt and dp
dt at each computed time step (frame). The training/test split will be

80%/20%.



4 Methods

Fig.1 Baseline model architecture Fig.2 HNN model architecture

4.1 Baseline model

For the baseline model, we use a feed-forward neural network to output the time derivatives dq̂
dt and

dp̂
dt directly. The loss function is defined as the mean squared error of the output dq̂

dt and dp̂
dt and the

input labels, i.e.

Lbaseline =
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n
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(||dq
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dt
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dt
||22 + ||dp
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dt
||22).

The architecture of the baseline model is demonstrated in Fig. 1.

4.2 HNN model

For the HNN, the learning method is to use supervised learning to learn the scalar Hamiltonian,
denoted as H. The objective is to minimize the loss function formulated in the following:

LHNN =
1

n

n∑
i=1

(||dq
(i)

dt
− ∂H(i)

∂p(i)
||22 + ||dp

(i)

dt
+

∂H(i)

∂q(i)
||22),

The output of the neural network will be the derivatives of the predicted hamiltonian with respect
to p and q, which are, by the governing equations of Hamiltonian Mechanics, the time derivatives
dq
dt and −dp

dt ) respectively. The architecture of the HNN is demonstrated in Fig. 2. The other
hyperparameters used for each model are listed in Table 1.

Fig. 3 Process to get predicted trajectories

4.3 Trajectory prediction

For the prediction, we only give a randomly initialized initial condition. Then through the prediction
models (both the baseline model and the HNN model), we get the predicted time derivatives of the
input coordinates. Afterwards, we integrate the predicted time derivatives to obtain the coordinates
of the system for the next time step as the new input for the prediction models. We keep repeating
the following procedure until we arrive at the final time step to get a complete trajectory over the
duration. The workflow is illustrated in Fig. 3.
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Table 1. Hyperparameters for the baseline model and the HNN model
Architecture Value Training Value Initialization Method

# hidden layers 4 Learning rate 0.001 Weight Principled
Mini-batch size 200 Optimizer Adam Biases Zero

# iterations 10000 β1 0.9
Neurons per layer 300 β2 0.999

Activation tanh ϵ 10−4

5 Experiments and results

5.1 Double pendulum system with ties (tie case for later reference)

The analytical expression of the Hamiltonian for this system could be found in [5]. The parameter
setup for this system is m1 = m2 = 1kg and l1 = l2 = 1m.

Fig. 4 Loss history of the HNN model (tie case)

The loss history of the HNN model is demonstrated in Fig. 4. The loss history of the baseline model
is similar to that of the HNN model in terms of the trend and the magnitude of the final loss. The
model is also performing equally well in the training and test examples.

Fig. 5 Predicted Hamiltonian (tie case) Fig. 6 Predicted energy components(tie case)

Fig. 5 showed the predicted Hamiltonian by the baseline model and the HNN model, plotted against
the ground truth values. The predicted Hamiltonian by the HNN and its kinetic and potiential energy
components are illustrated in Fig. 6. We can see obviously from Fig. 5 that the system predicted by
the HNN is energy conservative, since the predicted Hamiltonian stays almost as a constant, despite
the periodic oscillation around the ground truth Hamiltonian, and that the baseline model is not due to
its increasing trend of the Hamiltonian over time. From Fig. 6, we can see that for the HNN predicted
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kinetic energy and potential energy, when one quantity change, the other changes accordingly to
maintain the Hamiltonian a constant value, which is the inherent physics in this system. From the
attached animations, we can see that the predictions for both systems look almost the same as the
ground truth initially. With the elapse of time, the HNN model is able to predict a trajectory quite con-
sistently with the ground truth, while the baseline model shows increased deviation from the ground
truth. Quantitatively, for initial conditions within the range of the training dataset, the HNN model is
able to predict a trajectory within 10% normalized RMSE with respect to the ground truth over the
entire duration, while the baseline model’s predicted trajectory has more than 20% normalized RMSE.

Fig. 7 Loss histories (different noise levels) Fig. 8 Predicted Hamiltonians (different noise levels)

Fig. 7 shows the loss histories of the HNN model when different magnitudes of zero-mean gaussian
noise are added to the training set (0, 0.01, 0.02, 0.05, 0.1 indicate the average ratio of the norm of
the noise to the norm of the input data). We are able to see the losses converge for all cases, while the
final losses are rising with the increase of noise in the dataset. In terms of the predicted trajectory, the
error also increases with increased noise, and the error is reflected on the moment when the predicted
trajectory demonstrates noticeable deviation from the ground truth trajectory: the predicted for the
noise 0.02 exhibits such deviation when t ≈ 6s, and t is becomes smaller as the dataset gets more
noisy. As for the predicted Hamiltonian, increased noise leads to more significant oscillations in the
prediction as illustrated in Fig. 8.

5.2 Double pendulum system with linear springs(spring case for later reference)

The parameter setup for this system is m1 = m2 = 1kg, l1 = l2 = 1m and spring stiffness
k1 = k2 = 1N/m.

Fig. 9 Loss history of the HNN model (spring case)

The loss history of the HNN model is illustrated in Fig. 10. The loss history of the baseline model
also has similar trend and final loss magnitude. Compared to the tie case, the final loss is larger,
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which is acceptable because in this case we have 4 degrees of freedom (either pendulum can move in
normal and tangential directions independently) as opposed to only 2 degrees of freedom in the tie
case.

Fig. 10 Predicted Hamiltonian (spring case) Fig. 11 Predicted energy components(spring case)

Figures 10-11 showed the counterparts of Figures 5-6 in the spring case, and similar observations
as in the previous section can be drawn from these figures. In the spring case, for initial conditions
within the range of the training dataset, the normalized RMSE of the predicted trajectory for the
HNN model is within 10%, and we observe over 30% normalized RMSE for the baseline model’s
prediction. Due to time limitation, same analysis of noise involvement is not available, but we can
expect good resemblance to the tie case.

6 Conclusion and next steps

The HNN turns out to be very effective to predict the states of not only 1 degree-of-freedom (DOF)
problems, but also problems with increased DOF, even with deformable objects involved: the
predicted trajectory shows high consistency with respect to the ground truth trajectory, which
outperforms the baseline model to a large extent. The predicted Hamiltonian is conservative over
the entire duration, indicating that the HNN is able to learn the exact physics behind the system,
while the baseline model is not. In addition, it also shows good robustness when the dataset
becomes noisy. The deviation of the predicted trajectories are mainly caused by accumulation of
prediction errors over the time integration steps, which could be alleviated by using smaller time steps.

In the future, we expect to extend the framework of HNN to more complicated systems, such as
to the regime of continuum mechanics, in which datasets from analytical solution are difficult or
even impossible to obtain. We will resort to datasets generated from finite element simulations for
reference and test the performance of the model.

7 Contributions

This is a single-person group. Therefore, Huijian Cai has done all the work himself.
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