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Abstract

Physics-based models are important tools in lithium-ion battery research and
development. Yet their computational cost is impractically high for simulating
commercial-size battery packs consisting of hundreds of cells. Here we propose a
CNN-LSTM battery surrogate model used for uncertainty quantification based on
transfer learning and multi-fidelity simulation data from a physics-based simulation
model. First, a low-fidelity surrogate model is trained on a large single-cell dataset.
Then, we freeze the lower LSTM layers and retrain the upper LSTM layer using
medium-size small pack datasets of various pack configurations. Finally, we freeze
all LSTM layers and retrain the input and output layers using a small 3s37p (3
series 37 packs) pack dataset. The model achieves a percentage RMS error of
1.08%, compared to 2.17% for a directly-trained model without transfer learning.

1 Introduction

In lithium-ion battery design, operation, and prognosis, physics-based models show irreplaceable
advantages in prediction accuracy and adaptability. When utilizing physics-based battery pack models,
it is common practice to assume electrochemical parameters for each battery cell within the pack to
be identical at the nominal value. However, in reality, cell parameters are subject to manufacturing
variations and non-uniform degradation rates due to uneven branch currents and temperature gradients.
This parameter heterogeneity within the pack leads to uncertainty in model-predicted battery pack
performance, such as pack voltage, capacity, and average temperature.

In this project, we quantify the uncertainty in physics-based model prediction of battery pack terminal
voltage. Due to high computational cost associated with Monte Carlo sampling on physics-based
simulation, we constructed a CNN-LSTM surrogate model for Li-ion battery packs based on transfer
learning and multi-fidelity simulation data. The input of our algorithm are design parameters of
all cells within a battery pack. Specifically, there are 13 uncertain model parameters and 2 pack
configuration parameters for each cell, so for a pack containing 9 cells, the input of one data sample
has the shape of (15 x 9, ). We then use a neural network model with transfer learning techniques to
output a time series of predicted pack voltages. We also output a time series of binary flags indicating
whether the battery pack has finished its cycle profile.
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Figure 1: Lithium-ion Battery Electrochemical Model Uncertainty Quantification Workflow Overview

2 Related work

There are many studies focusing on uncertainty quantification (UQ) of single cell battery model,
using Monte Carlo Simulation [1]], polynomial chaos expansion (PCE) [2]], polynomial response
surfaces, kriging, and radial-basis neural networks (RBNN) [3]. The common motivation of adopting
alternative UQ methods is to reduce the high computational cost of battery model simulation. Still,
UQ using PCE in [2] with 17 uncertain parameters requires 1000 simulations to quantify cell capacity
uncertainty under a constant-current discharge process. The UQ work in [3] using kriging and RBNN
with 3 uncertain parameters select 315 simulation points in the parameter space to build the surrogate
models. The computational cost of simply applying these methods on a physics-based battery pack
model consisting of hundreds of cells would be impractically expensive.

Application of neural network surrogate models in lithium-ion batteries ranges from UQ[4] to
degradation prognosis[5] and state-of-charge estimation[6]]. [4] focuses on bi-fidelity transfer learning
for UQ, where 17 uncertain battery parameters are fed into a feed-forward neural network (FNN) and
a residual neural network (ResNet) respectively to fit the model-predicted end-of-cycle liquid phase
concentration. The work refers to coarse and fine discretization grids in simulation as high and low
fidelity data. [6] constructed an LSTM surrogate model for online battery state-of-charge estimation.
The surrogate model achieves 135 times faster computational speed at the cost of 2% mean absolute
error compared with 0.72% for original physics-based model. The work presents promising efficacy
of LSTM as a battery surrogate model with sequential outputs.

To the best of our knowledge, no study has been conducted to utilize multi-fidelity data for surrogate
modeling of physics-based battery pack models.

3 Dataset and Features

We use synthetic data generated from battery pack enhanced single-particle model [7] under a
constant-current cycling profile to train the neural network surrogate model. Table. [T]explains the
number of available data samples under each type of pack configuration. Note that 3s3p and 3s37p
are two representative cases where accuracy of output distribution is additionally examined, apart
from accuracy of point estimates. Therefore, in these two cases 1000 data samples are set aside as
"ground truth output distribution" for testing.

The input features of each data sample are design parameters of all cells within a battery pack.
For each cell, 13 uncertain parameters are independently and randomly generated subject to given
distributions. This parameter vector is then concatenated with 2 pack configuration parameters
indicating the location of the cell within the pack (explained in Sec [8.1)).
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