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1 Introduction

Speech enhancement is a common task for video calling, automatic speech recognition, speech com-
munications, home assistants, and audio forensics [1[2,13]]. One component of speech enhancement is
dereverberation, where the influence of the room on the speech that is captured, in the form of acoustic
reflections and scattering from surfaces and objects, is removed to yield a clean, more intelligible
version of the spoken words. Deep-learning models for speech dereverberation often rely on synthetic
datasets for training in which clean (i.e., anechoic) speech is convolved with room impulse responses
(RIRs) to create reverberant speech. Various loss functions and error metrics are used to compare the
estimated clean-speech output of the model to the clean-speech input prior to convolution, however
the RIR is rarely optimized for or considered as an output. In this project, we have implemented and
evaluated deep-learning based speech dereverberation models that estimate both the clean speech and
the RIR, the latter of which can be used in downstream tasks such as characterizing the acoustics of a
space, or auralizing other sounds to simulate them being in that space.

2 Related Work

Speech enhancement has been a popular topic in the research community for decades. More recently
there have been advancements in signal processing and deep learning systems, including work that
combines multiple systems together to accomplish speech enhancement in an augmented reality
application [4]. Further work has looked at hybrid approaches combining signal processing techniques
and machine learning methods [5]. Other approaches have tackled the problem using purely deep-
learning-based methods, such as with graph neural networks [6] and triple-path attentive recurrent
neural networks (RNNs) [7]].

Speech dereverberation also has seen advances with the use of deep networks such as temporal
convolutional networks [8] and, more recently, with generative adversarial networks (GANSs) [9].
Room impulse response (RIR) estimation is less common, although deep-learning -based approaches
do exist, e.g., using auto-encoders [10] or GANs [IL1].

3 Approach

We consider two approaches for this project, both based on the U-net architecture [[12]. The first
model is based on Wave-u-net, shown in Figure[I] a time-domain approach which previously has
been applied to acoustic source separation [13] and speech enhancement [[14]. We downloaded the
model from https://github.com/f90/Wave-U-Net-Pytorch, and made some modifications
to integrate it into our Pytorch Lightning framework, and to estimate clean speech and an RIR
(deconvolution) rather than to separate sources from an additive mixture. For this model the input
reverberant speech (~ 4.6s), and the output clean speech and RIR are all in the time domain.
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Figure 1: Wave-u-net architecture, adapted from [14]

Figure 2: DARE-Net: Our proposed dual-branch UNet with transformer model architecture. The
proposed model is trained using a tunable speech and RIR loss.

The second model we call DARE-Net, which signi cantly extends the model depicted in Figure

2 of [15]. The version from the paper was excessively large, so we reduced both the encoder and
decoder segments from 8 layers to 4. We added a second decoder branch to estimate the RIR from
the embedding with a hyper-parameter(to trade-off DARE performance) and a transformer with
4-head attention, 3 decoder and 3 encoder layers to act on the UNet embedding layer to learn temporal
and spectral relationships. See Figure 2 for the speci ¢ architecture. As input we use approximately 2
seconds of reverberant speech in a 2x8192x16 format (channels for magnitude and phase x frequency
bins x STFT time). We also modify the training procedure with and without a novel pre-alignment
step which signi cantly improves gradient descent during training. The pre-alignment aligns the
target RIR to the early stage output of the network to lower the loss drastically. The ground-truth
RIRs must always contain the same initial group delay as there is no way for the network to determine
this in a practical scenario.

We try many different loss functions in the time-domain, frequency-domain and time-frequency
domain, and nd that L1 and MSE losses on the magnitude and phase work best. For the Wave-u-net
we investigate L1, MSE and Multi-resolution STFT lo4§[17] on the whole time domain RIR

signal as well as MSE on a 25ms segment around the peak of the RIR. For the Wave-u-net speech
loss, MSE on the whole time domain signal was used. The frequency domain DARE-Net model uses
L1 loss on the log-magnitude spectrum plus L1 loss on the cos and sin of the phase component to
ensure smooth gradients on the circular phase, which was the best performing combination of losses.
Other losses that were less effective include L1 and MSE on the unwrapped phase, the mel-scaled
magnitude spectrum, the time domain signal, the log absolute time domain signal, the peak value,



the peak time delay, the peak position and Kullback—Leibler (KL) divergence on the log absolute
time domain signal. However, all metric losses were informative with respect to what they were
measuring.

Our code can be accessed from:
https://github.com/jdonley/Speech-Dereverberation-and-RIR-Estimation

The jdonley/dev branch contains our most recent proposed DARE-Net models, and the pcalamia-dev
branch contains our most recent Wave-u-net implementation.

4 Datasets

For supervised training, we require that there is a ground truth RIR and a clean speech sample for
each reverberant speech example in order for our loss functions to compute the error between the
predicted output and the target ground-truth sample for both components. We generate the reverberant
speech examples by convolving clean speech with RIRs. For the clean speech, we use the LibriSpeech
dataset 18] with a prede ned train/dev/test split of 100.6/5.4/5.4 hours of data. For the RIRs we
use the MIT IR Survey19] with a train/dev/test split of 80/10/10% (216/27/27 RIRs from the set of
270). When training and evaluating our models we use a 160k/800/8k split built from the splits of the
components.

5 Results

5.1 WaveUNet

Sample results for our wave-u-net model are shown in 3, for which we used a learning 1até of

MSE loss on the speech prediction, and MSE loss on 25ms around the peak of the RIR. The plots
of the target and predicted clean speech suggest that the model is able to estimate that component,
although listening tests revealed audible distortion artifacts in addition to reduced reverberation. The
plots of the target and predicted RIR suggest that this architecture is unable to learn that component.
These results were consistent over different loss functions and learning rates. The learning curves for
this model (not shown) indicated that the training loss decayed rapidly for approximately half of an
epoch (approximately 80k examples) with only marginal improvement after that (up to 70 epochs,
our longest training run). The validation loss similarly showed an extremely shallow decay with little
improvement over the training period.

Figure 3: Sample output from our Wave-u-net model after 70 epochs, using an MSE loss on the clean
speech, MSE loss on 25ms around the peak of the RIR, and a learning t&efof

5.2 Proposed DARE-Net

We present results for the proposed DARE-Net architecture as well as an ablation study to show
the bene ts and trade-offs of a transformer architecture on the embedding space, a joint branched-
decoder-loss optimization for dereverberation and RIR estimation and the proposed pre-alignment
step described in Section 3.

The validation loss curve for all training experiments using DARE-net followed the training loss curve
at slightly larger values due to dropout regularization on the encoder, decoder and transformer layers,
which helped prevent model over- tting. Due to the long training experiments, we ensured that the
learning rate was rst approximately tuned betweéh ? and10 # and then used an exponentially
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