
NBA Prediction: Traditional Data vs Advanced Data

Raul Alcantar Peter Shih Yu-Hao Han
Computer Science Mechanical Engineering Materials Science
Stanford University Stanford University Stanford University
raulalc@stanford.edu ps306113@stanford.edu hyh8871@stanford.edu

Abstract
The scope of this project is to create

a deep neural network to predict the
outcome of NBA games using both players’
traditional data and advanced data. In the
previous works about NBA games
prediction, team statistics are the most used
data. What makes this project novel is the
use of data from every single player as the
input layer, instead of team statistics or
averaged players’ stats. Additionally, there
is no previous deep learning project working
on NBA advanced data. We trained our
model with advanced data and compared the
performance and training strategy to that of
one that would train on traditional player
data as well as comparing it to models that
trained on traditional team statistics.

1 Introduction
 The National Basketball Association

is the largest and the most valuable
basketball association in the world,
generating combined revenues of around 6.5
billion U.S. dollars every year. Aside from
the huge revenue, NBA also generates a
gigantic amount of data, including players’
data and team’s data. The data is highly
beneficial to the teams because they can
determine their strategies and game plan
through statistics and analytics. In recent
years, traditional data like points per game
or rebounds per game are not enough to
evaluate a single player’s performance. The
NBA’s analysts create a list of advanced data
which are calculated to interpret a player’s
true contribution to the outcome of games.
For example, player efficiency rating (PER)
is one of the most commonly used advanced

metrics to measure a player's per-minute
productivity. It adds up all the positive
contributions a player makes to his team
while subtracting the negative ones. It also
adjusts for both pace and playing time to
make it easier to compare players to one
another. Advanced data are highly used in
NBA analytics now. However, are they
really more correlated to the outcome of
games? We decided to investigate this more
through machine learning.

2 Related Work
There have been a few models

created by others that predict the outcome of
the NBA, but the main information they
look at is a team’s season performance such
as win percentage and their traditional team
averaged statistics such as points or assists
in a game or elo rating. Some of the
inspiration we got for this project was from
work done by Rohan Agarwal, Swapnil
Ahlawat, Susmit Wani, and Wandan
Tibrewal from Birla Institute of Technology
and Science in Goa, India [1] where they
used some of the intuitive team statistics
along with player statistics, which is what
caught our attention. They incorporated
player statistics by getting a weighted
average of features related to players of a
particular team and this is what we wanted
to focus on. Instead of getting a weighted
average of the features and using that in
combination with team statistics, we wanted
to see what the impact of these player
statistics alone independently would have on
the outcome of the match.

1

3 Dataset Details
Since our project focuses on the

individual player’s performance and how it
impacts the outcome of any given game, we
had to look for data that clearly showed their
personal stats for games spanning the
previous 15 years. We eventually settled on
the NBA's official website [2][3] after
careful analysis of numerous websites since
they are the official website of the league
that will have the most accurate and
up-to-date information and statistics for any
given year, matchup, and player.

Once we decided where our source
of data would be, we then worked on
scraping the data manually off of their
player box score tables. We wanted to
compare the effectiveness of “traditional”
player statistics to that of “advanced” player
statistics and the NBA official website
provided all of this information. The
“traditional” player statistics consist of the
normal information about the game such as
whether the team won or lost the matchup,
and whether the player was on the visiting or
the home team. However, the data we
focused on for our model were statistics
such as the number of points, assists,
rebounds, field goals, made, and field goal
attempts, for a given game, along with many
other statistics (full list of statistics is listed
in Figure 1). The “advanced” player
statistics consist of some similar statistics as
the “traditional” ones such as whether the
team won or lost, the matchup, and whether
the player was on the visiting or home team,
but the rest of the statistics differ. The other
information they include is the player’s
offensive rating, defensive rating, net rating,
and assist percentage, for a given game (full
list of the rest of the statistics is listed in
Figure 2). There are many more statistics
that are included that will be explained later
once again.

The NBA official website only
provides the statistics for the given game, so
we averaged out the statistics between all of
the previous games leading up to a given
game to get the player’s overall performance
in a certain season prior to the given game.
We did this by accumulating the statistics
and averaging the total number of matches
played prior to a game. We used this
approach because this would be the most
realistic set of information available for
future games. If one wanted to predict the
results of a match that is occurring
tomorrow, one would not be able to use the
players’ statistics for this season if it has not
ended, however, they would have the
statistics for all of the games leading up to
tomorrow’s game.

In addition to this, we also modified
the data to clearly represent whether the
team was on the home team or the visiting
team and separated the statistics for the two
because this is another feature that may
differ in relevancy and impact on the
outcome.

Once all the data was collected and
put into a single file, we then reorganized
the data to create a proper dataset for
match-ups so that we would be able to feed
it into the model. For every game, the
number of players that played in that match
can vary from 16 total players to 20 and
because this was not consistent, we decided
to only consider the 16 players with the most
amount of minutes averaged thus far in
order to keep the input for the model the
same. Therefore for a single game, we
recorded the outcome of the game and used
that as our predicted value, y, and we
concatenated every player's statistics into
one example, x, so for an example using the
traditional statistics, an example had

input features and an13 · 16 = 208
example using the advanced statistics had

input features. Since there14 · 16 = 224

2

are so many input features, we believed that
a multilayer neural network would be the
best choice as it would allow for the model
to learn intricate features and predict the
outcome with higher accuracy.

4 Method
For our model, we use PyTorch to

construct two multilayer neural networks,
with one using the “traditional” player
statistics, and the other one with the
“advanced” player statistics as input
features. We used ReLU as the activation
function for the hidden layers and sigmoid
as the activation function for the output
layer. The optimizer we utilized is the Adam
optimizer with default parameters. As for
the loss function, we used many to see
which would lead to the highest
performance. We use the binary cross
entropy loss function, as well as the mean
squared error loss function and the negative
log-likelihood loss function. We then tuned
the hyperparameters, such as the number of
layers, layer size, learning rate, mini-batch
size, regularization parameters, number of
epochs, etc. of our model with a nested for
loop.

5 Traditional Data Model
5.1 Baseline
For the traditional dataset baseline we built a
basic 1-layer logistic regression binary

classification model with sigmoid as the
activation function and 16 total neurons
using PyTorch. The baseline model achieved
a training set accuracy of 93.4% and a dev
set accuracy of 63.7%.

5.2 Experiments
We initially set our model for

training the dataset to have 3 hidden layers
with the size of [16, 24, 4] for the layers,
and used it to first tune the batch size and
the learning rate. We discovered that a batch
size of 256 and a learning rate of 0.01
achieved the best balance between run speed
and accuracy. Moreover, the train and test
accuracy, as well as the loss, all converge
around 500 epochs. To find the optimal
number of layers, we ran several
experiments on different network sizes using
3, 4, and 5 hidden layers. We discovered that
3 hidden layers are fully capable of training
the model, and adding more layers had little
to no effect on the dev set accuracy, but
requires significantly more run time. As a
result, the below experiments are done with
3 hidden layers with a batch size of 256, a
learning rate of 0.01, and 600 epochs.

To find the optimal network size, we
ran nested loops and looked at the
performance of different network sizes. The
program loops over a first hidden layer size
between 16 to 48 with a step of 8, a second
hidden layer size between 10 to 30 with a
step of 4, and a third hidden layer size

3

between 2 to 18 with a step of 4, which in
total make up 150 combinations of network
sizes.

With a 3-layer network, the model is
able to achieve an average dev set accuracy
of 70.2%. However, the train accuracy of the
model is 78.7%, giving an average variance
of 8.5% (dev accuracy - test accuracy),
which indicates the model is overfitting the
data. To solve this problem we added a
dropout rate of 0.2 and ran the experiment
again on different network sizes.

When applying dropout with a
three-layer network, the model is able to
achieve an average dev accuracy of 69.4%,
train accuracy of 70.2%, with an average
variance of just 0.27%.

5.3 Results
Among the experiments we found

the optimal network size to be [16, 26, 6]
with 0.2 dropout applied. Both the training
and dev set accuracy are 70.1%. See
Appendix Fig.1 plot for Loss vs Epochs for
the Traditional Data Model.

Common methods of predicting
NBA games using only team statistics
usually have an accuracy between 66% and
72%. Our results show that the accuracy by
using the stats of individual players on both
teams to train the model is on the higher end
of the spectrum. The model is able to
perform well because it is able to learn how
a single player can affect the outcome of the
game. On the other hand, since we do not
look at any team statistics or averages, the
model isn't able to learn the strengths and
weaknesses of specific lineups. Some
players perform better when playing with
specific teammates and poorly with others
and using an individual's statistics is not able
to capture that, thus leading our model to not
perform higher than the 72% benchmark
some models have set.

6 Advanced Data Model
6.1 Baseline model

As there was no previous game
prediction article working on NBA
advanced stats, we started the experiment
based on what we learned from the
traditional stats model, which is a simple 1
layer neural network with 16 neurons, 0.01
learning rate, 256 mini-batch size, 600
epochs, and no regularization. The result
showed a huge variance with 90.7% training
set accuracy and 64.7% dev set accuracy.

6.2 Experiments
We believe the overfitting issue

mainly stems from the lack of number of
layers because the input size for advanced
data is large with 224 input features.
Therefore, we ran the same three hidden
layer experiments mentioned in Section 5
(Traditional Data Model). Within the 150
sets of hidden layer sizes, [48, 10, 14] shows
the best dev set accuracy of 69.7% along
with 73.7% training set accuracy. The
difference between training set accuracy and
dev set accuracy drastically dropped from
26% to only 4%.

To evaluate the model with a deeper
network, we built a 4-layer network on the
best 3-layer network, [48, 10, 14], by
looping over the first hidden layer size
between 48 to 96 with a step of 8. The best
4-layer network is [80, 48, 10, 14], but its
dev set accuracy is still 69.7%. Therefore,
we decided to work on a 3-layer network
with a size of [48, 10, 14] to save
computational time and resources.

As for learning rate and mini-batch
size, we conducted experiments on 7
different learning rates [0.1, 0.05, 0.025,
0.01, 0.005, 0.0025, 0.001] and 3 different
batch sizes [128, 256, 512]. The model with

4

0.01 learning rate and 256 batch size still
performs the best.

6.3 Results
From all the experiments we

conducted on the advanced dataset, the
optimal model is a 3-layer neural network
with [48, 10, 14] hidden layers size, 0.01
learning rate, 256 mini-batch size. The
highest dev set accuracy is 69.7%, which is
close to but still lower than our results from
traditional stats. See Appendix Fig.2 plot for
Loss vs Epochs for the Advanced Data
Model.

Generally, NBA advanced data is
generated from a linear combination of
traditional data. For example, offensive
production rating is calculated from a linear
combination of points produced, individual
possessions, points per game, free throw
percentage, 3-point percentage and field
goal percentage. Therefore, conducting deep
neural networks on traditional stats and
advanced stats show similar capabilities of
predicting the NBA game outcomes. The
true values of advanced data are to help
NBA analyzers evaluate the performance of
players more accurately and objectively. But
when it comes to predicting game outcomes,
advanced data can not contribute more
information.

7 Conclusion & Future Work
In this project, we developed a deep

neural network to predict the NBA game
outcomes from individual players’ data. Our
three layer network performed a dev set
accuracy of 70.1%. The results prove that
even though the model trained by only
individual players’ data is on the higher end
of the typical NBA prediction accuracy
range, the lack of team’s data constrains the
model’s performance. As for advanced data,
our three layer model achieved a dev set

accuracy of 69.7% because advanced data
are also derived from the traditional data so
that it does not provide more information to
the model, hence contributing little to the
performance.

The future work is to combine the
traditional players’ and team’s statistics and
see how they could improve the model. In
addition, different types of models can be
made with algorithms and activation
functions different from the ones we used,
and also continuing to play with the
hyperparameters could lead to more and
more success potentially. These predictor
models can then be implemented and tuned
for more specific scenarios such as playoff
matches as the circumstances and
environment in those types of matches vary
greatly from a regular season match. These
predictor models could also be potentially
used in the NCAA for college basketball
matches or during March Madness with the
use of transfer learning.

GitHub Link
https://github.com/raul-jigs/NBA-outcome-p
redictor

5

https://github.com/raul-jigs/NBA-outcome-predictor
https://github.com/raul-jigs/NBA-outcome-predictor

References

[1] Agarwal, Rohan, et al. “Prediction of NBA Games Using Machine Learning.” GitHub.com,
13 Feb. 2021,
https://github.com/swapnil-ahlawat/NBA_Game_Predictor/blob/main/NBAPrediction.pdf.
[2] National Basketball Association. “NBA Official Players Traditional Boxscores.” Players Box
Scores | Stats | NBA.com, National Basketball Association, 2022,
https://www.nba.com/stats/players/boxscores.
[3] National Basketball Association. “Players Advanced Box Scores Traditional: Stats.” NBA
Official Players Advanced Boxscores, National Basketball Association, 2022,
https://www.nba.com/stats/players/boxscores-traditional.
[4] Weiner, Josh. “Predicting the Outcome of NBA Games with Machine Learning.” Medium,
Towards Data Science, 15 July 2022,
https://towardsdatascience.com/predicting-the-outcome-of-nba-games-with-machine-learning-a8
10bb768f20.

6

https://github.com/swapnil-ahlawat/NBA_Game_Predictor/blob/main/NBAPrediction.pdf
https://www.nba.com/stats/players/boxscores
https://www.nba.com/stats/players/boxscores-traditional
https://towardsdatascience.com/predicting-the-outcome-of-nba-games-with-machine-learning-a810bb768f20
https://towardsdatascience.com/predicting-the-outcome-of-nba-games-with-machine-learning-a810bb768f20

Appendix

Fig. 1 Traditional Data Model Loss vs Epochs

Fig. 2 Advanced Data Model Loss vs Epochs

7

