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Abstract

Vocal Source Separation is a subtask of Music Source Separation or Speech Sepa-
ration. As sequence data, many approaches using RNN based networks to retrieve
audio features like Hybrid approach(1) and SWave(2). Like RNNs, transformers
and attention mechanisms are proved to work well on sequence data, but they
can process in parallel thus faster. Temporal convolutional network (TCN) is a
framework which employs casual convolutions and dilations so that it is adaptive
for sequential data, and because it’s a CNN based network, it can process in parallel
as well. Conv-Tasnet(3) uses TCN for mask estimation for Source Separation in
time domain. There are more approaches only learn from time-domain data, and
some approaches use a hybrid method(1). We propose a new architecture including
Local Self Attention, TCN and the the hybrid of waveform and spectrogram for
this separation task.

1 Introduction

Music Source Separation or Speech Separation is to separation multiple audio sources from the
mixture signal. By vocal source separation, we can get the vocal source for main melody analysis,
and the instrumental part can work for producing cover versions of any song which the official
accompanies is not provided. The speech separation is a basic task with a wide range of applications,
including mobile communication, speaker recognition.
What interests me the most is art generation, especially music and novel. There are many toy solutions,
generating non-sense materials, because there are not so much data to learn from. But for music
generation, I think vocal source separation is an important basic task, because we can extract main
melodies from any existing and future songs with it, and we can either generate directly from them,
or apply a music transcript before generating. Sufficient data is essential for good generation.
The input to our algorithm is an audio segment. We then use a neural network to output the vocal
source and accompaniments of it with a same length.

2 Related work

We can group the previous works into these categories. (1) Data formats, most of works directly
process audio data in time-domain representation, such as Att-Tasnet (4), Conv-Tasnet(3), Swave(2).
Some of them use a hybrid of time-domain and frequency-domain representation, such as Hybrid
Demucs(1) and Hybrid Transformers(5). There are also approaches using STDCT(6) and other
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formats of audio data. (2) Encoder algorithms, there are CNNs[Conv-Tasnet(3), Swave(2)], and
Attention based encoders[Att-Tasnet (4), (5)], and the mixture of CNN/RNN/Attention[Hybrid
Demucs(1)]. (3) Separation Network, there are UNet[Hyprid Demucs(1)], TCN[Conv-Tasnet(3),
Att-Tasnet (4)] and LSTM[Swave(2)].
Some of the related work are for speech separation, but vocal source separation from music is
different because music has pitch, and the pitch range and timbre of humans are obviously different
from instruments. Spectrogram is the most intuitive representation of pitch, so we should take this
into consideration to gain the potential to reach the theoretical limit, so the previous works which
didn’t use spectrogram are not perfect for music source separation. Some of the work use RNNs
based architectures, RNNs are good for sequence data, but they are slow and require large amount of
memory, so they cost more hardware to extend, more time-consuming to train, and this also happens
at runtime.
But some of these work also solve these pitfalls partially, Conv-Tasnet(3) and Att-Tasnet(4) uses TCN
for causal sequence data estimation, Hybrid Demucs(1) involves both time-domain and frequency-
domain. We make use of these advantages to build a new architecture for vocal source separation.
Novelty: the encoder layer, separation layer, decoder layer are based on algorithm in Att-Tasnet(4).
Using different audio embeddings(Waveform and Spectrogram) to compare are my own work. Also,
I propose a receptive field(local size) finder method, it can decide the best local size within just 1
round of training. And a 2-step method to align the output scale to the input audio.

3 Dataset and Features

The MUSDB18 is a dataset of 150 full lengths music tracks (around 10h duration) of different genres
along with their isolated drums, bass, vocals and others stems. The dataset is split into training and
test sets with 100 and 50 songs, respectively. All signals are stereophonic and encoded at 44.1kHz.

• Preprocessing

1. Select the mixture track as X, and the vocal track as Y
2. Convert from stereo to mono
3. Resample from 44100Hz to 16000Hz
4. Save the X and Y to disk

• Normalization
Wav file is normalized once it’s loaded.

• Augmentation
Apply one or more of the following augmentation methods with 50% probability.

1. Pitch Shift (-2 to +2)
2. Time stretch (-10% to 10%)
3. Filter (band pass filter)
4. Spectrogram mask (mask a rectangle range of spectrogram to zero)

• Segmentation
A segment is 1s long(an array with size 16000). We won’t segment the audio when
preprocess, but load each song entirely, and random pick a start point uniformly, and with a
specified length, the segment is ready. A random seed is set to make the dataset stable. This
can save space and time to load data, and has an augmentation effect of time shift.

• Spectrogram
STFT if applied to generate spectrogram, n_fft is 512, hop_size is 160, a segment [1,16000]
is padded to ensure the result is [1, 257, 102, 2] (with return_complex=False, because
normalization layers cannot apply on complex number). The 1st line of frequency bin and
the 1st and last lines in time series is removed, the shape is now [1, 256, 100, 2], and the
2nd and 4rd dimensions are combined into one dimension, the result is [1, 512, 200].

4 Methods

1. Basic Architecture
Figure 1 illustrates the single architecture of our algorithm(N is batch size, L is segment
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Figure 1: Single Architecture

Figure 2: Spectrogram Embedding Layer and Waveform Embedding Layer

length, F is feature dimension, T is time series length). The waveform inputs firstly go
through the embedding layer, and are converted to audio embeddings with shape [N, F, T],
then a local multi-head attention encoder will encode the embeddings to the same shape
encodings. The encodings are inputted to separation layer, the output is the mask. Then, the
local multi-head attention decoder will accept both the encodings and mask, and output the
predicted embeddings of vocal source. The output here may sound good, but the loudness
is likely to be different to the original vocal source, so we put it into a simple scale layer.
And then we get the vocal output. The input mixture subtracts the vocal output is the
accompaniments output.

2. Embedding Layer
Embedding Layer convert [N, L] waveform inputs to [N, F, T] audio embeddings. There
are 2 methods: spectrogram and waveform as Figure 2 shows. The Conv1D parameters are
(in_channels, out_channels, kernel_size, stride).

3. Encoder Layer
A one layer multi-head attention encodes the embeddings with a relu activation follows. The
output will perform an element-wise multiplication with the embeddings, Figure 3.

4. Separation Layer
Then encodings are then passed to TCN Separation layer. One round of TCN have D blocks,
the dilation is 1, 2, .. 2**(D-1), and these TCN blocks will repeat R times. Then the results
go to Separator Conv1D after PReLU activation. The output of TCN layer is the mask of
vocal source. See Figure 4

5. Decoder Layer
Encodings and mask are the inputs of decoder layer. The mask passes through a multi-head
attention block, and performs an element-wise multiplication with encodings. After that is a
pointwise 1D convolution. Figure 5.

Figure 3: Encoder Layer
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Figure 4: TCN Separation Layer

Figure 5: Decoder Layer

6. Output Layer
Output layer is the reverse operation of embedding layer. Firstly there is a convolution. And
if it’s the spectrogram, a ISTFT is applied.

7. Loss Function for Separation
We use -SI-SNR(Scale-Invariant Signal-To-Noise Ratio) as loss function. The "scale
invariant" means the strength(or amplitude, power) is unconcerned to compare the
similarity of 2 signals. But it also has a problem, that the output music is often
louder than original source. This is why we need a scale layer to fix that. We use
SI-SNR for 1st stage training (train separation), and 2nd stage we train the scale layer to
ensure not only the signal is similar, but has the same loudness. Si-SNR is defined as follows:

starget =
< ŝ, s > s

∥s∥2

enoise = ŝ− starget

SISNR = 10log10
∥starget∥2

∥enoise∥2

8. Loss Function for Scaling
We train a simple linear network in 2nd stage to scale the output to match the input signal.
In this stage we use -SDR metrics as loss.

SDR = 10log10
∥s∥2

∥s− ŝ∥2

9. Two-Way Architecture
Finally, we combine the waveform architecture and spectrogram architecture together, the
output waveforms are added to calculate losses.

5 Experiments and Results

Because the previous work (Att-Tasnet) is for speech separation, our datasets and areas are different.
So we don’t compare the results with previous work, instead we will compare the results of
time-domain, frequency-domain and hybrid approaches.

1. Hyperparameters and Tuning
See Hyperparameter Table for definition. These hyperparameters can be grouped into
different categories:
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Parameter Description Sample Value
N Batch size 512
lr Learning rate 1e-4
lr_sched LK scheduler config Linear
L audio segment length 16000
W window size 512
H hop size 160
F number of features 512
NH numher of heads 16
Local Local attention width 20
Dropout Dropout rate 0
B TCN bottleneck dim 128
BC TCN block channel 512
D TCN dilation number 4
R TCN repeat number 3
BH TCN block channel num 1024

Table 1: Hyperparameters

Figure 6: Learning Rate and Loss Curve

• Learning speed
N,lr,step,gamma determine the learning speed and quality.
N also affects the running memory. So we make N as large as possible as long as
memory is enough. LR affects the learning speed and quality. Too small lr makes
the learning slow, too large makes it don’t converge. We firstly train with a randomly
selected LR and analysis. When it’s 1e-4, the training loss oscillate a lot, this shows
the LR is too large in the oscillation period. Then an StepLR(step, gamma) scheduler
is applied, after every ’step’ steps, lr = lr * gamma. We try (50, 0.7) over 1000 epochs.
The loss curve is much smoother, but the validation loss is much higher than previous
one in later period. This shows it may be trapped in a basin on a plateau(Figure 6. See
appendix for more LR tuning details.
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Figure 7: Local Finder Method

• Receptive field
W, F, Local, D determine the receptive field of the algorithm. The receptive field in our
problem is like: how long neighbors should I care about to separate this audio segment?
It’s 0.025ms, 0.05ms or 0.1ms? The right receptive field make the algorithm perform
best, the larger will cost longer time to train, the smaller will lose performance.
We find the best "Local" by a non-uniform local mask method: the local size of position
close to both sides is smaller and the center position is larger as Figure 7-A. And train
with this mask, compare the loss position by position. The loss of middle position
should be lower than both sides. The result is like Figure 7-B.
We can find that the loss of middle part is indeed smaller, but the middle 20% is not
remarkably better than 20% to 80% range. The local_size of 20% position is just
20, so we choose this number. Also note that, this local_size is decided with wave
length, sample rate, W and F. Since the segment is 1s duration, we can say the neighbor
0.5s contribute most to the position. So if we change wave length or sample rate, the
local_size should be changed correspondingly.

• Fitting degree
F, B, R, BH determine the fitting degree. The larger, the model is deeper, it has more
parameters to fit but requires more time to train, and more likely to overfit. We just
choose a set of proper initial values, and increase them gradually when iterate.

• Layer Normalization Type There are 3 types of layer norm: No layer norm(magenta),
1D layer norm(purple) and 2D layer norm(yellow). We can tell from Figure 8, without
layer norm, the training is faster, but also easy to overfit. With a 2D layer norm, the
training is slowest, the val_loss is not good either. I guess this is because some key
information is lost due to the normalization. The 1D layer norm is the best, the val_loss
is the lowest.

2. Time, Frequency and 2-Types of Hybrid Methods
We have 2 hybrid methods. One is concatenate waveform embedding and spectrogram
embedding as new audio embedding. The other is hybrid both architecture, add the outputs
as the final output.
We also train these algorithms in different scale of nets, the 1st one is relatively smaller, the
2nd one is larger to see the differences of performance.

3. Results

• Smaller Net
See Figure 9 for hyper parameters and loss charts. The best results of each algorithm
are: waveform train(-1.07) val(0.825), spectrogram train(1.367) val(1.398), hybrid
embedding train(0.540) val(0.866), hybrid architecture train(-2.661) val(0.783).
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Figure 8: Different Layer Norm in Embedding Layer(magenta - none, purple - 1D, yellow - 2D)

Performance: Hybrid Architecture > Waveform Embedding > Hybrid Embedding >
Spectrogram Embedding.
Stability(difference between train_loss and val_loss): Spectrogram Embedding > Hy-
brid Embedding > Waveform Embedding > Hybrid Architecture.

• Larger Net
See Figure 10 for hyper parameters and loss charts. The best results of each algorithm
are: waveform train(6.71) val(5.03), spectrogram traintrain(5.67) val(4.52), hybrid
embedding train(4.46) val(3.93).
Performance: Hybrid Embedding > Spectrogram Embedding > Waveform Embedding.
Stability(difference between train_loss and val_loss): Hybrid Embedding > Spectro-
gram Embedding > Waveform Embedding.

6 Conclusion
1. Conclusion of fine tuned smaller network

(a) Waveform Embedding(Baseline)
• Parameters directly contribute to the output, good for fitting, but easier to overfit.

(b) Hybrid Architecture
• Doubling the parameters, performance not getting better remarkably.

(c) Spectrogram Embedding
• Parameters don’t directly contribute to the output (they have to go through ISTFT

first).
• Very good characteristic extraction! The difference between val loss and test loss is

the least of all!
• But the performance is relatively worst. (Some original information is lost when

applying STFT and ISTFT).
(d) Hybrid Embedding

• Most robust and good enough approach!
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Figure 9: Smaller Net Results

• The spectrogram part is like a stablizer to prevent overfit and keeps tracking the
musical characteristics.

• The waveform part seems fixing the details where the spectrogram may lose.
2. Conclusion of a expanded network

(a) Waveform Embedding(Baseline)
• The performance rapidly decays, it becomes the worst of all.

(b) Spectrogram Embedding
• As stable as before. The performance gets better than waveform embedding.

(c) Hybrid Embedding
• Best of the three. Both stable and well performing.

3. Conclusion of audio Hybrid Embeddings
A very promising audio data representation.

• It balances musical expressions and audio waveform details.
• It can prevent overfitting better, suitable for very large architecture.
• At the same time, the performance is good as well.

7 Future Work

These experiments didn’t reach sota, more tuning on architecture details is required, such as different
types of normalization, activation functinos, adding more layers to encoders/decoders. Also, we
should find better LR scheduler. At last, we will dig deeper into Hybrid Embeddings.

8 Contributions

All codes of model/data/train are the original work of Jiabin Wang. The algorithms of attention
en-decoder and TCN parts are based on Att-Tasnet Paper (4). The metrics of SDR are from Hybrid
Paper (1). The libraries we use include PyTorch(7), PyTorch-Lightning(8).
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Figure 10: Larger Net Results

9 Appendix - Hyperparameters Tuning Details

Please see Figure 11.
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Figure 11: Hyperparameters Tuning Details
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