
UnderCurrent: Deep Normalizing Flows for Robotics Applications

Harrison Delecki∗
hdelecki@stanford.edu

Liam Kruse∗
lkruse@stanford.edu

Marc Schlichting∗

mschl@stanford.edu

1 Introduction and Novelty

One of the most important tasks in robotics applications is the estimation of states of a system. Examples of state variables include
position, velocity, or the orientation of the robot. System measurements or robot dynamics might be stochastic in nature, i.e., we
do not know the exact state and assume the states are random variables distributed according to some unknown distribution. The
core state estimation task is to find the underlying distribution. Furthermore, the task is assumed to be autoregressive—that is, the
estimation of the state xt can only use the observations o1:t and no future observations. In more formal terms, state estimation
is a regression problem where the goal is to fit a probability density function pθ(xt) that is parameterized by θ to current and
previous observations o1:t. Unfortunately, classical state estimation techniques often lack the expressive power to represent complex
underlying distributions, especially if the system dynamics are highly nonlinear or if outcomes are multi-modal.

Normalizing flows are a deep generative method for constructing probabilistic models of complex distributions using parametric
variable transforms [1]. Transforms can be parameterized by simple deep neural networks, invertible neural networks, or recurrent
networks. Normalizing flows have been applied to model high dimensional and multi-modal distributions in image generation
and time-series modeling [2]. In this project we seek to improve upon existing architectures for normalizing flows by using more
expressive deep neural network architectures. Furthermore, we apply our deep normalizing flow framework to robotics environments
such as autonomous driving—an area that has received little attention in the normalizing flow literature thus far. Furthermore, we
contribute a direct comparison between different deep recurrent architectures for sequential observations. This includes a novel
approach of using transformers for learning embeddings in the context of normalizing flows.

2 Related Work

Classical filtering techniques such as the ubiquitous Kalman filter [3] are well-suited for applications in which unimodal Gaussian
distributions represent the state distributions. To deal with non-linear system dynamics, extensions such as the extended Kalman
filter (EKF) and the unscented Kalman filter (UKF) [4] have been introduced. However, many complex systems—especially highly
stochastic multi-agent systems—induce multi-modal distributions over outcomes for which classical Gaussian filter techniques fail.

Given the potential multi-modality of the distribution p(xt), we must consider more advanced models for density estimation
such as Gaussian mixture models (GMM) or mixture density networks (MDN) [5]. Mixture density networks (MDN) use deep
neural networks to parameterize a conditional GMM which is optimized with a maximum likelihood objective. MDNs have found
applications in many domains such as human pose estimation [6], trajectory prediction [7], and speech synthesis [8]. While they
perform well in lower dimensional space, they struggle with high-dimensional and non-Gaussian target distributions.

In recent years, deep generative models have been applied to the state estimation task. However, not all deep generative models
provide explicit access to the probability density function. For example, generative adversarial networks (GANs) [9] can only
sample from the latent distribution and do not explicitly compute its density. Variational autoencoders (VAE) [10] can provide
access to the latent distribution while separately training an encoder and decoder. The training goal for VAEs has two components:
learning a transform Z = f(X) such that Z ∼ N (0, I) and learning the approximate inverse of f . In the context of state estimation
tasks, VAEs have been used for estimating and sampling the distribution of the quantum states of a system [11] or for representing
distributions over electroencephalogram measurements [12]. However, VAEs often suffer from poor reconstruction errors because of
the two-objective training goal.

The inherent issue with an encoder/decoder structure—namely, that the decoder is merely an approximate inverse of the encoder—is
improved upon by the normalizing flow architecture, which learns a single invertible mapping. The interpretable yet highly expressive
nature of normalizing flows has garnered increased research interest in the robotics community. Deng et al. [13] use normalizing
flows to decode a base continuous stochastic process into a complex observable process. Ma, Gupta, and Kochenderfer [14] represent
multi-modal policies with conditional normalizing flows and demonstrate their effectiveness on a series of multi-agent games.
Normalizing flows can also improve importance sampling, as Zhang, Sun, and Tian [15] learn the distribution of risk events for
autonomous vehicles and fit an importance sampling distribution with a masked autoregressive flow. Zanfir et al. [16] conduct human

∗H. Delecki, L. Kruse, and M. Schlichting are with the Stanford Intelligent Systems Laboratory in the Department of Aeronautics
and Astronautics at Stanford University, Stanford, CA 94305, USA

CS230: Deep Learning, Autumn 2022, Stanford University, CA.

z1 z2 . . . zi−1 zi . . . zD

ci τ

z′1 z′2 . . . z′i−1 z′i . . . z′D

o1:t
hi

Figure 1: The i-th step of our conditional autore-
gressive normalizing flow, as adapted from [1]. The
conditioning operator ci takes as input latent vari-
ables z and observation sequence o1:t. The operator
τ uses the output hi to transform latent variables.

Input
Embedding

Output
Embedding

Add & Norm

Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Feed
Forward

N×

Positional
Encoding

Positional
Encoding

Linear

Softmax

Output
Probabilities

N×

Inputs 0

Figure 2: Transformer architecture, as adapted from
[17]. We propose the use of transformers for the
conditioning operator in a normalizing flow.

pose and shape estimation using kinematic latent normalizing flows. However, the use of deep normalizing flows in robotic state
estimation applications such as autonomous driving and UAV pose estimation remains largely unexplored. We propose the use of our
UnderCurrent framework to represent the complex and possibly multimodal beliefs over underlying robot states, mapping complex
real-world distributions to highly interpretable latent representations using more advanced deep neural network architectures.

3 Methodology

Normalizing flows represent a target distribution p(x) by transforming an easy-to-evaluate latent distribution p(z) through the
change of variable formula:

p(x) = p(z)|detJf (z)|−1 where z = f−1(x) (1)
where Jf is the Jacobian of the transformation f , which is invertible and differentiable. f is typically composed of i transformations
f = fi ◦ ...◦f1, parameterized by θ. The parameters are optimized by minimizing the KL-Divergence between the target distribution
and the latent space under the transform f .

3.1 Normalizing Flows

Autoregressive flows are one of the most popular classes of flow. In autoregressive flows, the transformations are constructed in an
autoregressive manner. For a single transformation step, the transform of the i-th component of z to z′ is

z′i = τ(zi,hi) where hi = ci(z<i) (2)

where τ is the transformation operator and ci is the conditioning operator. This step is illustrated Fig. 1. The transformation operator
must be invertible. The conditioning operator has no restrictions and can be parameterized by an arbitrary deep network.

For the classical setup that mimics the GAN or VAE functionality of sampling from the distribution, normalizing flows require a
tractable inverse of the flow function. However, the state estimation task only requires the forward pass through the flow function and
the guarantee that the flow is a diffeomorphism. This encourages us to explore various deep neural network architectures for the
conditioning operator.

3.2 UnderCurrent Flow Architecture

Our UnderCurrent framework consists of stacked layers of permutation, linear, and masked affine autoregressive flows. Permuting
input variables between flow layers has been shown to help the model learn the target transformation [1]. A linear flow is an invertible
linear transformation of the form z = Wx, where W is an invertible matrix that parameterizes the transformation. Finally, a masked
affine autoregressive layer in the style of Fig. 1 passes outputs to subsequent layers. A deep conditioning operator conditions the flow
on the provided context, while a context encoder encodes the conditional information to the latent distribution parameters.

3.3 Conditioner Scheme

The i-th conditioning operator takes z1:i−1 and o1:t as an input and outputs the parameters hi that parameterize the transformation
operator τ . In a naive approach, we could train i different conditioners; however, this is inefficient as all conditioners have a similar
task. Using a single conditioning operator for all i flow transformations requires deep architectures that take sequential inputs such
as recurrent neural networks (RNN) [18], gated recurrent units (GRU) [19], long short-term memory (LSTM) [20], or transformers
[17]. Sequences of observations o1:t, possibly of varying length, necessitate a recurrent architecture.

2

4 Dataset

We construct two driving datasets in simulation to validate the proposed architecture. Consider a nonholonomic car with position
(px, py) and heading angle θ, and control over its velocity v and angular acceleration ϕ. The car’s equations of motion are given by

pt+1
x = ptx +∆t · vt · cos(θt) pt+1

y = pty +∆t · vt · sin(θt) θt+1 = θt +∆tvtϕt

The angular acceleration is given by

ϕt+1 = ϕt +∆t · ψ · c1 · cos(c2 · t)

where c1 and c2 are constants and ψ is a switching parameter used to induce multimodalities into the dataset. Time-stamped
coordinates from individual rollouts, (px, py, t), with noise-corrupted inputs v and ϕ are shown in Fig. 3. The black lines indicate
the nominal noise-free trajectory. A unimodal dataset, shown in Fig. 3a, is generated by fixing ψ = 1 for every rollout. A bimodal
dataset representing paths through a traffic circle, shown in Fig. 3a, is generated by randomly selecting ψ ∼ U([−1, 1]) at a fixed
time index and thereafter holding ψ constant for the remainder of the rollout. Each dataset contains over 1.5 million data points.

0 10 20 30 40 50 60 70 80 90
0

20

40

60

x

y

(a) Unimodal driving dataset

0 10 20 30 40 50 60 70 80 90
0

20

40

60

x

y

(b) Bimodal driving dataset

Figure 3: Driving datasets generated in simulation.

5 Experimental Results

We demonstrate the representational capabilities of a deep normalizing flow-based approach on two state-estimation tasks using our
autonomous driving datasets. The source code is available online2.

5.1 Temporal Conditioning Task

For the first state estimation task we consider the unimodal dataset and condition on the time stamp of each data point, estimating
the conditional distribution p(px, py | t). An MLP context encoder encodes the conditional information to the parameters of a
latent conditional diagonal normal distribution, while the conditioning operator is simply the identity function. We benchmark our
proposed approach against three baselines:

• Unscented Kalman Filter: A UKF is a classical recursive Bayesian filter that relies on a deterministic sampling strategy
to approximate the effect of a distribution undergoing a nonlinear transformation [4].

• Mixture Density Network: An MDN represents a conditional Gaussian mixture model where the components are
parameterized by a deep neural network. We use an MDN with 5 mixture components parameterized by a two-layer
network with 8 neurons per layer and tanh activations.

• VAE: We use a conditional VAE architecture with identical encoder and decoder architectures, each consisting of 8 hidden
layers with 64 neurons each and tanh as the activation function.

The results of the baseline methods and our current implementation of normalizing flows are depicted in Fig. 4 where we show the
1σ, 2σ, and 3σ confidence regions. Additionally, we estimate the KL divergence between the dataset and 1000 samples drawn from
the fitted models using a two-sample KL divergence estimator [21] in Table 1. Both from the visual evidence and the quantitative
analysis, our normalizing flow implementation outperformed the baselines.

5.2 Observation History Conditioning Task

For the second task we condition on sequences of noisy position observations and estimate the next state of the vehicle; that is, we
estimate the conditional distribution p(xt | o1:t−1). Due to the time-series nature of the data, we consider recurrent conditioning
operators. The following conditioning operator architectures are tested:

2https://github.com/MarcSchlichting/UnderCurrent.git

3

https://github.com/MarcSchlichting/UnderCurrent.git

Method D̂KL(p(x)∥p̂(x))
Unscented Kalman Filter 0.7578
Mixture Density Network 0.2612
Variational Autoencoder 0.7978
Normalizing Flows 0.0684

Table 1: Estimated KL divergence between models and dataset. Lower KL divergence indicates better performance.

• Recurrent Neural Network: A single-layer RNN with three input features and four output features serves as a deep
baseline.

• Gated Recurrent Unit: A single-layer GRU with three input features, four hidden features, and four output features is
employed to improve upon the RNN baseline by solving the vanishing gradient problem.

• Long Short-Term Memory: A single-layer LSTM with three input features, four hidden features, and four output
features is employed to improve upon the RNN baseline by solving the vanishing gradient problem while providing more
expressivity than the GRU.

• Transformer: We use a transformer network and follow the same architecture as [22]. Since we use the transformer to
learn an embedding, no ground truth for the target sequence is available. As learning an embedding is a many-to-one task,
only one prediction step in "inference" mode is necessary. We initialize the target sequence required by the transformer
with zeros, which is common practice for other recurrent methods.

0 10 20 30 40 50 60 70 80 90

0

20

40

60

x

y

UKF Level Sets

0 10 20 30 40 50 60 70 80 90

0

20

40

60

x

y

MDN Level Sets

0 10 20 30 40 50 60 70 80 90

0

20

40

60

x

y

VAE Level Sets

0 10 20 30 40 50 60 70 80 90

0

20

40

60

x

y

Normalizing Flow Level Sets

Figure 4: Confidence regions of baseline models and normalizing flows conditioned for t = 13s. The yellow (1σ), turquoise (2σ),
and the purple (3σ) contours represent confidence regions of the model. The red dots are datapoints at t = 13s.

The results of the four deep recurrent conditioning operator architectures are depicted in Fig. 5 where we show the 1σ, 2σ, and 3σ
confidence regions over the predicted next state. Additionally, we compute the mean log likelihood of the ground truth positions
given the associated context. The model attempts to maximize the log likelihood of the noise-free data points, and thus a higher mean
log likelihood indicates that the learned distribution more closely matches the true underlying belief. The Transformer architecture
yields the highest mean log likelihood value, as shown in Table 2.

6 Discussion and Future Work

In this work we evaluate four deep conditioning operator architectures for conditioning a normalizing flow and an MLP context
encoder for encoding conditional information to the parameters of a latent base distribution. Normalizing flows outperformed

4

Conditioning Operator Log Likelihood.

RNN 1.4255
GRU 1.4818
LSTM 1.5057
Transformer 1.5736

Table 2: Mean log likelihood of undisturbed data points under the learned distribution, represented by the normalizing flow. Higher
log likelihood indicates better performance.

0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

x

y

RNN Level Sets

0 10 20 30 40 50 60 70 80 90

0

20

40

60

x

y

GRU Level Sets

0 10 20 30 40 50 60 70 80 90

0

20

40

x

y

LSTM Level Sets

0 10 20 30 40 50 60 70 80 90

0

20

40

x

y

Transformer Level Sets

Figure 5: Confidence regions of four conditioning network architectures conditioned on a sequence of noisy observations. The yellow
(1σ), turquoise (2σ), and the purple (3σ) contours represent confidence regions of the model. The red dots are noisy observations for
a single trajectory. The trajectory is a left-branching trajectory. Both RNNs and GRU predict a rather right-branching trajectory, the
LSTM is indecisive, and only the transformer has a slightly left-branching prediction.

both classical state-estimation techniques and deep conditional networks on a simple state-estimation task—even when an identity
function conditioning operator was used—due to their expressive representational capabilities. Furthermore, we demonstrated that
deep recurrent conditioning operator architectures are well-suited for time-series context on a complex state-estimation task with a
bimodal underlying belief distribution. A Transformer network was experimentally shown to provide the best quantitative results in
the UnderCurrent framework. To the author’s knowledge, this is the first time that a transformer architecture has been employed as a
normalizing flow conditioning operator, and represents one of the first applications of normalizing flows to state-estimation tasks.

In future work we will consider alternative flow architectures such as Unconstrained Monotonic Neural Network autoregressive
flows [23]. Furthermore, additional conditioning operator architectures—such as diffusion models—will be considered. Finally, we
will validate the UnderCurrent framework on high-dimensional state-estimation tasks such as UAV pose estimation.

7 Contributions

This project is a team effort and implementing the normalizing flows was a highly collaborative effort. For the temporal conditioning
task, L. Kruse contributed the UKF baseline, H. Delecki the MDN, and M. Schlichting the VAE. For the observation history
conditioning task, L. Kruse contributed the RNN and GRU, H. Delecki the LSTM implementation, and M. Schlichting the
Transformer embedding network.

5

A Appendix

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000
−2

0

2

4

iteration

lo
ss

RNN
LSTM
GRU
Transformer

Figure 6: Loss for normalizing flows based on different embedding networks.

References
[1] G. Papamakarios, E. T. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan, “Normalizing flows for probabilistic

modeling and inference.,” Journal of Machine Learning Research, vol. 22, no. 57, pp. 1–64, 2021.
[2] I. Kobyzev, S. J. Prince, and M. A. Brubaker, “Normalizing flows: An introduction and review of current methods,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 11, pp. 3964–3979, 2021.
[3] R. E. Kalman, “A new approach to linear filtering and prediction problems,” 1960.
[4] S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter to nonlinear systems,” in Signal processing, sensor fusion,

and target recognition VI, Spie, vol. 3068, 1997, pp. 182–193.
[5] C. M. Bishop, “Mixture density networks,” 1994.
[6] C. Li and G. H. Lee, “Generating multiple hypotheses for 3d human pose estimation with mixture density network,” in IEEE

conference on computer vision and pattern recognition (CVPR), 2019, pp. 9887–9895.
[7] O. Makansi, E. Ilg, O. Cicek, and T. Brox, “Overcoming limitations of mixture density networks: A sampling and fitting

framework for multimodal future prediction,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

[8] H. Zen and A. Senior, “Deep mixture density networks for acoustic modeling in statistical parametric speech synthesis,” in
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 3844–3848.

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative adversarial networks,” Communications of the ACM, vol. 63,
no. 11, pp. 139–144, 2020.

[10] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
[11] A. Rocchetto, E. Grant, S. Strelchuk, G. Carleo, and S. Severini, “Learning hard quantum distributions with variational

autoencoders,” npj Quantum Information, vol. 4, no. 1, pp. 1–7, 2018.
[12] D. Bethge, P. Hallgarten, T. Grosse-Puppendahl, et al., “Eeg2vec: Learning affective eeg representations via variational

autoencoders,” arXiv preprint arXiv:2207.08002, 2022.
[13] R. Deng, B. Chang, M. A. Brubaker, G. Mori, and A. Lehrmann, “Modeling continuous stochastic processes with dynamic

normalizing flows,” Advances in Neural Information Processing Systems, vol. 33, pp. 7805–7815, 2020.
[14] X. Ma, J. K. Gupta, and M. J. Kochenderfer, “Normalizing flow policies for multi-agent systems,” in International Conference

on Decision and Game Theory for Security, Springer, 2020, pp. 277–296.
[15] H. Zhang, J. Sun, and Y. Tian, “Accelerated testing for highly automated vehicles: A combined method based on importance

sampling and normalizing flows,” in 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC),
IEEE, 2022, pp. 574–579.

[16] A. Zanfir, E. G. Bazavan, H. Xu, W. T. Freeman, R. Sukthankar, and C. Sminchisescu, “Weakly supervised 3d human pose
and shape reconstruction with normalizing flows,” in European Conference on Computer Vision, Springer, 2020, pp. 465–481.

[17] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems,
vol. 30, Curran Associates, Inc., 2017.

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” California Univ
San Diego La Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[19] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, On the Properties of Neural Machine Translation: Encoder-Decoder
Approaches, arXiv:1409.1259 [cs, stat], Oct. 2014.

6

[20] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov.
1997.

[21] F. Pérez-Cruz, “Kullback-leibler divergence estimation of continuous distributions,” in 2008 IEEE international symposium
on information theory, IEEE, 2008, pp. 1666–1670.

[22] N. Wu, B. Green, X. Ben, and S. O’Banion, “Deep transformer models for time series forecasting: The influenza prevalence
case,” arXiv preprint arXiv:2001.08317, 2020.

[23] A. Wehenkel and G. Louppe, “Unconstrained monotonic neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

7

	Introduction and Novelty
	Related Work
	Methodology
	Normalizing Flows
	UnderCurrent Flow Architecture
	Conditioner Scheme

	Dataset
	Experimental Results
	Temporal Conditioning Task
	Observation History Conditioning Task

	Discussion and Future Work
	Contributions
	Appendix

