
Exploring Graph CNNs for Smartphone Positioning

Adyasha Mohanty
Department of AeroAstro

Stanford University
madyasha@stanford.edu

Abstract

A majority of GNSS receivers today are installed in smartphones. These receivers
however provide location accuracy of up to a few meters only due to noisy measure-
ments, lower signal level, and multi-path effects in urban environments. Traditional
model-based processing methods make assumptions about the noise models and
require manual tuning of parameters such as covariances based on the operating en-
vironment. In contrast, learning-based approaches can model environment-specific
errors and improve positioning accuracy in dense urban environments. In this work,
we propose a Graph Convolution Neural Network based approach to learn posi-
tioning corrections from smartphone GNSS measurements. Our graph can model
multi-constellation and multi-frequency signals as well as learn context-specific
features to provide meter-level accuracies on diverse urban datasets, outperforming
both model-based and learning-based baselines.

1 Introduction

Improving smartphone positioning can enable autonomous lane-keeping, advanced augmented
reality technologies, and precise mapping applications. Due to constraints on GNSS chipset, size,
and hardware cost, smartphone GNSS receivers can only provide meter-level accuracy in urban
positioning. The accuracy is degraded further in the presence of buildings and tree canopy due to
reflections and blocked signals.

Significant efforts have been underway towards improving the quality of positioning given the hard-
ware constraints. For example, a novel Android GNSS application was released in 2016 (Humphreys
et al. (2016)) which provided users access to raw GNSS measurements directly from the applica-
tion. Additionally, Google released open datasets in 2020 and 2021 (Fu et al. (2020)) which were
collected in multiple cities to promote novel positioning solutions. Traditional methods of processing
smartphone GNSS measurements include factor graph optimization, Kalman filter and Weighted-
least-squares (WLS). However, recently, there has been an emergence of learning-based techniques
due to their ability in modeling environment and context-specific errors while making no assumptions
on the underlying noise models.

In this work, we propose a Graph Convolution Neural Network (GCNN) that s a position correction
given an initial receiver position. Given the success of GCNNs in operating on non-Euclidean
data structures, we use them to learn a graph using satellite positions as nodes and preconditioned
input features from a Kalman filter. Our GCNN can handle varying satellite visibility in urban
environment, retains permutation-invariance properties via an unordered structure of nodes and can
model measurements from multiple constellations and multiple signal frequencies. The GCNN
takes the following inputs: a) a feature matrix that is constructed using satellite geometry and signal
characteristics such as signal-to-noise ratio and measurement residuals and c) an adjacency matrix

CS230: Deep Learning, Autumn 2022, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

that describes the connections among the different nodes in the graph. Given the graph structure, the
GCNN infers a 3D position correction in an end-to-end manner. The correction is then applied to the
coarse position to obtain the final receiver position.

2 Related work

In Siemuri et al. (2021), the authors trained three machine learning algorithms such as Linear
Regression, Bayesian Ridge Regression and a Bayesian Neural Network to predict the positioning
correction. The results showed that the weighted combination approach outperformed all three
algorithms in terms of positioning accuracy. Another line of work (Kanhere et al. (2021)) used a Set
Transformer (Lee et al. (2019)) approach to learn the correction using pseudorange measurement
residuals and satellite geometry. This approach outperformed WLS method on real-world data but
provided limited positioning accuracy due to reliance on a single type of range measurements. In
(Han et al. (2021)), the authors utilized reinforcement learning to tune measurement noise covariances
in a Kalman filter that combines GNSS-IMU measurements but the filter required tuning the reward
function for the measurement noise covariances. Lastly, our prior work (Mohanty and Gao (2022))
proposed a hybrid approach using a simple Graph CNN and a Kalman filter to learn a positioning
correction. However, this work did not explore a variety of GCNN architectures and edge connections
to improve the positioning performance.

3 Dataset and Features

We use the Google Smartphone Decimeter Challenge (GSDC) 2021 datasets (Fu et al. (2020)) GSDC
Dataset that contain trajectories from different phones and different cities. We use the following
observables: ground truth from a high-grade GNSS-inertial system containing ECEF X ,Y and
Z positions of the phone receivers, GNSS range measurements from multiple constellations and
signal frequencies, signal-carrier noise measurements and uncertainties associated with each GNSS
measurement. We split the datasets into 74 training datasets and 12 test datasets.

Preprocessing: We first estimate an initial receiver position using a Kalman filter on the GNSS
range measurements. We then group all the measurements into different constellations and signal
types, followed by eliminating inter-system and inter-frequency biases, clock biases, tropospheric and
ionospheric errors. Using the satellite groups and range measurements, we construct feature vectors
that contain the measurement residual, LOS vector, range uncertainty and signal-to-noise ratio. The
range uncertainty and the signal-to-noise ratio values are used directly from the raw measurements.
Sample pictures showing the distribution of values for some of the above features are shown in Fig. 1.

Figure 1: Analysis of a sample training dataset from San Jose which shows the distribution of the
satellites in a skyplot, range uncertainties and signal-to-noise ratio values.

4 Methods

Graph Structure: In the GCNN, each node is represented using the satellite position pj
t . Each

node in the graph uses a 6� 1 feature vector which is constructed during the preprocessing phase.

2

https://www.kaggle.com/competitions/smartphone-decimeter-2022/data
https://www.kaggle.com/competitions/smartphone-decimeter-2022/data

We establish edges in the graph if the nodes satisfy the following conditions: a) they belong to the
same GNSS constellation b) difference in measurement residuals per satellite (node) < 5m and c)
pseudorange uncertainty < 5m. The thresholds for making the edge connections were determined by
analyzing the mean and standard deviation of the measurements and identifying data points beyond
the 1� value.

Figure 2: Sample structure of the graph showing various nodes depicting satellite positions and node
groups that are classified according to constellation type.

Convolution Layers and Prediction: The GCNN has two convolution layers which are modeled
using the GINConvolution operator Xu et al. (2019). GIN operators satisfy the WL graph isomorphism
test and achieve maximum discriminative power among other choices of convolution layers. The GIN
operator updates the node representation in the graph as:

hk
v =MLPK(1 + �k)hk−1

v +
∑

u∈N (v)

hk−1
u (1)

where MLP denotes a multi-layer perceptron that can represent the composition of several functions,
� is a fixed scalar, hk

v is the feature vector of node v as the kth layer and N (v) is the set of nodes
adjacent to the node v.

We perform mean pooling across all the graph nodes which instantiates message passing among
different nodes of the network, allowing the neighboring nodes to update their features and weights
concurrently, and also reduces the spatial resolution of the graph for subsequent layers. This operation
is shown as:

hk
v = ReLU(W �mean(hk−1

u ;8u 2 N (v) [v)) (2)

where ReLU is the activation function and W is a learnable matrix containing weights for the
previous layer. Post-aggregation, we pass the updated features at every node through a series of fully
connected linear layers which increase graph expressivity and improve our final prediction. The
GCNN is trained with a standard Euclidean loss function given by

Loss =

N∑
i=1

jj�xt �∆xtjj2 (3)

where the first term is the predicted position correction from the GCNN and the second term is the
true correction calculated from the Kalman filter position and the true receiver position. We use
ReLU layers for activations, layer norms for faster convergence, and Dropout to prevent overfitting
on small datasets.

5 Experiments/Results/Discussion

Baselines: We compare our proposed algorithm against two baselines: a temporal method which
is a Kalman filter solution and a fully connected network. The Kalman filter uses raw GNSS
measurements as inputs and has been tuned for maximal performance using Bayesian hyperparameter
optimization. The fully connected network takes as inputs the same features as our proposed GCNN

3

and consists of 5 linear layers with ReLU activations. The hidden layers have 1000, 800, 500 and
250 neurons, respectively. We also apply Dropout with a probability of 0:5 in the last layer.

Hyperparameters: In our graph CNN, we select 128 as the size of the hidden layer and dropout
probability of 0:5 to prevent overfitting considering the small size of the training datasets. We also
experiment with two different types of egde connections. A loose edge connection indicates that
the edges are connected only if they belong to the same constellation or have similar measurement
residuals with a threshold set to 5 m. A dense connection represents that the nodes may be connected
if they also have similar uncertainties in the pseudorange measurements, with a threshold value set to
15 m for both the measurement residual and the pseudorange uncertainty.

We use Pytorch Geometric (Fey and Lenssen (2019)) to train the GCNN for 10 epochs using the
MSE loss function described previously, with a learning rate of 0:01, weight decay of 5e� 4, and
Adam optimizer (Kingma and Ba (2015)). From preliminary experiments, we found that performing
stochastic gradient descent resulted in the best positioning performance compared to mini-batch
gradient descent. We performed training with freely available GPUs on Kaggle, which is a Google
platform for ML research. The network architecture (best perofmance) is described below.

Table 1: Parameters of the GCNN architecture
Module Layer Parameter

GINConv(1) Linear 6 � 128
ReLU -
Linear 4 � 32

GINConv(2) Linear 32 � 32
ReLU -
Linear 32 � 32

LayerNorm 32
Post-Message Passing Linear 32 � 32

Dropout p = 0:25
Linear 32 � 3

We use quantitative metrics such as the mean, median, maximum and minimum horizontal positioning
error across all 12 test datasets. The horizontal positioning error is described by the loss function
given previously and calculates the difference in the horizontal (2D) positioning correction between
the prediction from the graph CNN and the true correction from ground truth. For qualitative results,
we compare the predicted trajectory from all the algorithms w.r.t. true trajectory.

We first analyze the horizontal positioning error across all test datasets. As shown in Table 4, our
GCNN outperforms both baselines for each metric. Even though the number of available training
datasets is small, by using Dropout and GIN Convolution layers, and early stopping, we are able to
prevent overfitting of the network on the test datasets. However, the fully connected network overfits
on the test datasets as observed from the large maximum positioning and mean errors.

Table 2: Summary of positioning error on test datasets. Our best performing GCNN outperforms all
baselines across 12 test datasets.

Error Metric (meter) Kalman Filter Fully Connected Our Approach
Mean 4.5 6.1 3.1

Minimum 2.4 1.9 1.3
Maximum 8.4 11.2 4.5

We show qualitative results via trajectory plots in Fig. 3 that are generated by plotting the position
predictions from our GCNN, the Kalman filter baseline and the fully-connected network baseline
for a Los Angeles dataset. The figure indicates that our algorithm is able to follow the ground truth
trajectory more closely compared to the baselines. Although the predictions from the baselines show
some deviations, the GCNN is able to fine tune the correction and compensate for the deviations
leading to improved results from our algorithm.

4

	Introduction
	Related work
	Dataset and Features
	 Methods
	Experiments/Results/Discussion
	Conclusion/Future Work

