Deep Networks for Optical Phase Retrieval

Hunter Swan
Department of Physics
Stanford University
orswan@stanford.edu

Abstract

Modern tools in optics allow for generation of laser beams with essentially ar-
bitrary intensity patterns. However, in practice doing so requires solution of a
computationally intensive problem know as optical phase retrieval, which has no
known good algorithms. We investigate the solution of this phase retrieval problem
via deep neural networks. While the accuracy of solutions generated in this way
is not competitive with state of the art algorithms, they are adequate for many
applications and have the advantage of being much faster to compute.

1 Introduction

Anyone who has played with a laser pointer is probably familiar with the fact that most laser beams
look like nondescript spots. If one were to take a picture of the cross section of such a laser beam, you
would find that the intensity is very nearly a Gaussian, having a form like exp(—aws2 / 02). However,
it is possible to shape a laser into an essentially arbitrary pattern of light. Such beams are of great
technological and scientific importance, being useful for such applications as precision machining,
optical levitation, and analog computing.

Generating laser beams with a desired intensity is a com-
putationally non-trivial task. The most efficient method
(in terms of laser power) involves a hard mathematical
problem called phase retrieval (or sometimes "optical
phase retrieval," to distinguish it from some closely re-
lated problems which are also called "phase retrieval"). To
describe the method, we must first establish some basic
laser physics: A laser’s light field is described mathemat-
ically by a complex-valued vector field. The values of this
vector field in any one plane determine the values at all E.,:R* > C Epy B = C

other planes, via the dynamical equations obeyed by light. Eou = F{Ei}

If the laser beam is directed through a lens, the functional

form of the beam after the lens (briefly, "output beam") is  Figure 1: A lens performs a Fourier
related to that before the lens (briefly, "input beam") via  transform on the electric field E of light.
a 2-dimensional Fourier transform. Combined with the ability to modify the
phase of the input beam, this allows us to
create arbitrary output intensity patterns.

It turns out that for a given input beam, one can generate
essentially any output beam provided one can fully manip-
ulate the phase of the input beam at each point in space.
The advantage of this approach is that altering the phase
of light does not affect its total power, meaning this method is maximally efficient (lossless). The
phase of a laser beam can be controlled effectively with a gadget called a spatial light modulator

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



(SLM). An SLM consists of an array of pixels (typically 1000 x 1000), each of which can impart an
arbitrary constant phase to the light incident upon it. With sufficient pixel density, one can impart
essentially arbitrary spatially varying phase to a laser. However, the task of determining what phase
should be applied to achieve a desired output beam is highly non-trivial. This is the phase retrieval
problem, and the best algorithms are approximate and slow.

The precise mathematical statement of the phase retrieval problem is:

Given two real-valued functions g,G : R" — R with ||g||z2 = ||G||L2, find a
phase-valued function ¢ : R® — S* C C such that |F {g¢}| = G, where F
denotes the Fourier transform.

In practice, we modify this basic statement in several ways to make it easier to implement on a
computer:

» Firstly, we replace ¢ above with ¢’ for some real valued ) : R® — R, and the problem is
then to find the latter. This has the practical advantage that real scalars are easier to represent
than complex phases. It also introduces a few technical difficulties which we discuss later.

* Exact solutions to the phase retrieval problem can be prohibitively difficult to find, so we
instead seek to minimize the error ||| F {ge’ } | — G|| to some reasonable tolerance. Here

||-|| can be any convenient norm. We will use the L? norm in all that follows.

* Lastly, we discretize the problem onto a grid and use a discrete Fourier transform (DFT) D to
approximate the continuous Fourier transform F. If we use an [N -point discretization in each
spatial dimension, then the functions g, G' become approximated by arrays §, G : [N]" = R,
where [N] = {1,2,..., N}. These arrays can of course be thought of as vectors in R"V" .
The DFT D is a linear operator on the vector space of all such arrays, and we choose a

normalization of the DFT such that it is unitar

After these refinements of the basic phase retrieval statement, the problem we try to solve in this
work is as follows:

Given real arrays g, G : [N]™ — R with ||g|| = |G|, find an array ¢ : [N]* - R
minimizing |||D {ge™ }| — G||.

Again, ||-|| here denotes L? norm. In most of this work we focus on the case n = 1 of one spatial
dimension. The quantity |||D {ge™}| — G|| we refer to as the phase retrieval error and denote by

E(9,G,v).

2 Related work

Laser beam shaping is a well established field, and existing approaches to solving the phase retrieval
problem fall into two categories, geometric and iterative. On the geometric side, [[1]] summarizes
the state of the art. In related work [[7], the authors use a partial differential equation to solve the
phase retrieval problem. On the iterative side, the paradigmatic approach is the "Gerchberg-Saxton
algorithm" (GSA) [4]], and generalizations due to Fienup [2]]. More details on these methods can be
found in the appendix

As for neural network applications to this problem, to my knowledge no one has applied a neural
network specifically to optical phase retrieval. There are some closely related problems (which are
also called "phase retrieval", possibly with other adjectives) with applications in e.g. crystallography
which have successfully employed deep learning techniques [J8} 9]]. In [8]], the authors use a hybrid
method, combining both conventional iterative methods and a UNet, to get improved performance on
a somewhat different phase retrieval problem (distinguished from the optical phase retrieval problem
by different input data). In [9]], the authors use a "Y-Net" convolutional network to infer an unknown
optical field from two intensity measurements in different planes.

'This technical detail may be ignored by readers who find it confusing. We mention it because (1) unitarity
of the Fourier transform is required for the statement of the phase retrieval problem to make sense as given, and
(2) most programming languages implement DFT’s which are not unitary.



3 Dataset and Features

The problem we seek to solve is purely computational, and it turns out to be easy to generate
unlimited quantities of data for training. The most straightforward way to do this is to pick functions
g,% : [N]™ — R at random and compute G = D { gew}. Then v provides a solution to the phase
retrieval problem defined by g, G.

There is some flexibility in the distribution from which we draw ¢ and ), but it is best to have them
close to the functions encountered in practice. The details of how to accomplish this are relegated to
the appendix [8.2] A typical example of g, and the resulting G are shown in fig.

Random Amplitudes

e
w

Amplitude
s e
o

e
=

0 25 50 75 100
Spatial grid index
Random convex phase

250
200
150
100

Phase

0 25 50 75 100
Spatial grid index
Figure 2: A typical random input and output beam amplitude and random convex phase. The input
amplitude and phase are chosen independently, and the output amplitude is computed by a Fourier
transform.

Since this work is meant to be exploratory, we focused on 1D data with a discretization size N = 100.

One additional subtlety that arose in our work concerns a method for unsupervised learning that we
devised. In this approach (described below in the "Methods" section), we provide the neural network
only the functions g, G, with no . For this method, we don’t need to compute a ¢ at all, and instead
generate g and G separately, using essentially the same distribution, as described in the appendix [8.2]

4 Methods

4.1 General considerations

We used the Flux.jl machine learning stack [5} |6] built in the Julia language for our experiments, for
reasons of speed and extensibility. We experimented with two broad approaches to learning the phase
retrieval problem, one supervised and the other unsupervised. These two methods are described in
more detail below.

Within each of the approaches, we tried a variety of network architectures. Our baseline for the
purposes of this class was a 6-layer dense network trained via the supervised learning approach. The
metric by which we compare our models is the phase retrieval error (described in the Introduction)

B(9.G. %) = || {ge }| &
output from the network.

, averaged over a large sample of g and G, with z/; the corresponding

For each network, we trained with an Adam optimizer and tuned the learning rate in the "panda”
style, watching the loss descend until it stagnated, and then reducing the learning rate and continuing
to train. We generally continued this until reducing the learning rate yielded no further benefit. An
example of the loss throughout a training cycle is shown in fig. 3]

Our datasets typically had 10° data points, processed with minibatch size 64. Different minibatch
sizes affected the training speed slightly, but since we trained essentially until the loss stagnated, the
minibatch size had little effect on final accuracy of the model.



Supervised MLP loss vs. epoch

2.50%10° - — 0 = 0.0002

2,00%10°

Loss

L50x10° [

L00x10°

5.00x10" &

0 25 50 75 100
Epoch

Figure 3: Loss vs. training epoch for several sequential values of the learning rate for the baseline
model of a 6-layer dense network with supervised learning.

4.2 First approach: Supervised learning

To train a network via supervised learning, a single datum consists of a pair (g, G) (the input to the
network) and a phase 1. The network predicts a phase i) and the loss is the mean-squared error
(squared L? norm distance) |y — ¢||%.

In addition to the baseline 6-layer dense network, we also tried a basic convolutional network with

this approach. As described in the "Experiments/Results/Discussion” section, the performance of
these networks was rather poor.

4.3 Second approach: Unsupervised learning

To train a network via unsupervised learning, we again provide the network a pair (g, G) as input and
receive v as output. However, as loss we directly use the phase retrieval error |||D { ge“i’ H -G,
which is the metric we seek to minimize.

The main difficulty in implementing this method is that the usual implementations of the discrete
Fourier transform are not compatible with differentiable programming. In particular, the main fast

Fourier transform (FFT) implementation in Julia (FFTW [3]]) cannot be used in a Flux.jl model or loss
function. To work around this, we implemented our own version of a DFT. The details are described

in the appendix [83]

With this unsupervised method, we again implemented a 6-layer dense network and basic convolu-
tional network.

S Experiments/Results/Discussion

The metric we optimize for is E(g, G, 1) = || ’D {gew}’ — G||. For comparison, with N = 100,
running 1000 iterations of the GSA for randomly generated g, G (as in our data generation scheme
described above) yields a mean E(g, G, ) ~ 0.014.

Qualitatively, the first important result is that the supervised learning method did not perform well for
any of the networks we tried. In all cases, the loss stagnated quickly during training. Though the
model output phases bore some aesthetic similarity to the ground truth phases, they failed to attain
quantitative agreement even on training set data.

By contrast, networks trained via the unsupervised method worked reasonably well. All models
were readily trainable, and the output phases solved the phase retrieval problem reasonably well, as
quantified by the phase retrieval error.

Table [T] summarizes metric performance of various models and GSA.

A typical output beam amplitude produced by Fourier transforming a given input amplitude times a
phase output by one of these models is shown in fig. [4



Method GSA Supervised Unsupervised
Model MLP CNN MLP CNN
Metric || 0.014 +0.016 | 0.896 +0.157 | 1.044 +0.182 | 0.070 = 0.061 | 0.081 4+ 0.070

Table 1: Metric performance for various models and algorithms. Listed values are mean + one
standard deviation, evaluated on a test set of 10* examples.

QOutput beam from supervised model prediction

Target G
0.25 Resulting G

Amplitude

lIJ 2'5 5'0 7‘5 léD

Spatial grid index
Figure 4: Comparison between a target output amplitude and the output amplitude produced by
Fourier transforming the given input amplitude times the phase output by a 6-layer dense network,
trained with the unsupervised method. The close agreement between the two curves indicates a small
phase retrieval error in this case.

A noteworthy feature of the models we trained is that they run significantly faster than GSA, by a
factor of about 50.

5.1 Hyperparameter tuning and regularization

As mentioned, the learning rate was tuned by hand by watching the progression of the loss during
training. Since we trained to stagnation, the mini-batch size had little effect on the final model
performance.

Since we had access to unlimited data, we did not need to use regularization. We initially used 104
data points for training and observed some overfitting with the unsupervised method (test set loss
higher than training set loss), but after increasing the dataset to 10° points this went away.

6 Conclusion/Future Work

Though neither of our methods surpassed the standard GSA for solving the phase retrieval problem, the
unsupervised method came reasonably close. It may have the potential to achieve higher accuracy than
GSA with more refinement and training and a more sophisticated architecture. A significant advantage
of our deep learning approach to the phase retrieval problem is that, after training, computing solutions
to phase retrieval problems is substantially faster than GSA.

Directions for future work include:

* Try more sophisticated network architectures. Our work was substantially limited by
available memory on the computers we used for training. With more computing resources
we expect larger networks to give superior performance.

» Experiment with phase retrieval in 2 dimensions, which is the most useful for laser beam
shaping applications.

* Implement a differentiation rule for FFTs in Flux.jl, as described in the appendix This
would provide an order of magnitude speedup for the DFT layer in the loss function and
backpropagation.



7 Contributions

I performed all work described here solo.

References

[1] Fred M Dickey. Laser beam shaping: theory and techniques. CRC press, 2018.

[2] James R Fienup. “Phase retrieval algorithms: a comparison”. In: Applied optics 21.15 (1982),
pp. 2758-2769.

[3] Matteo Frigo and Steven G. Johnson. “The Design and Implementation of FFTW3”. In: Pro-
ceedings of the IEEE 93.2 (2005). Special issue on “Program Generation, Optimization, and
Platform Adaptation”, pp. 216-231. DOI:|10.1109/JPROC.2004.840301.

[4] R. W. Gerchberg and W. O. Saxton. “A Practical Algorithm for the Determination of Phase
from Image and Diffraction Plane Pictures”. In: Optik 35.2 (1972), pp. 237-246.

[5]1 Michael Innes et al. “Fashionable Modelling with Flux”. In: CoRR abs/1811.01457 (2018).
arXiv:|1811.01457, URL: https://arxiv.org/abs/1811.01457.

[6] Mike Innes. “Flux: Elegant Machine Learning with Julia”. In: Journal of Open Source Software
(2018). DOI:/10.21105/joss . 00602,

[7]1 Alexander Kratsch et al. “Solving the logarithmic Monge-Ampere equation with a RK4-
algorithm for beam shaping purposes of femtosecond laser beams with spatial light modulators”.
In: Laser Resonators, Microresonators, and Beam Control XX. Vol. 10518. SPIE. 2018, pp. 259-
270.

[8] Baopeng Li et al. “Phase retrieval based on difference map and deep neural networks”. In:
Journal of Modern Optics 68.20 (2021), pp. 1108-1120.

[9] Rujia Li et al. “Physics-enhanced neural network for phase retrieval from two diffraction
patterns”. In: Opt. Express 30.18 (Aug. 2022), pp. 32680-32692. DO1:/10.1364/0E.469080.
URL: https://opg.optica.org/oe/abstract.cfm?URI=oe-30-18-32680.

8 Appendix

8.1 Literature of phase retrieval

In the analytical theory of phase retrieval, there are certain special cases (low dimension or high
symmetry) which can be solved exactly in an appropriate limit (geometric optics) that is often met in
practice. The theory of such solutions provides substantial insight into the nature of solutions to the
phase retrieval problem. This theory is detailed in [1]].

Generic laser beam shaping problems do not strictly meet the requirements for the analytical theory,
but in many applications the analytics are close enough. When this is not the case, there is a certain
partial differential equation (the Monge-Ampere equation) which handles more complicated geome-
tries [7]. However, this PDE is highly non-linear and horrendously difficult to solve, significantly
limiting its practicality.

The analytic theory is only valid in a certain limit (geometric optics), and when going beyond this
limit, the only show in town is iterative methods. The paradigmatic approach here is the "Gerchberg-
Saxton algorithm" (GSA) [4]], which uses fast Fourier transforms (FFTs) and an iterative update rule
to approximate solutions to the phase retrieval problem. This method is slow and only moderately
accurate, but it is very general and robust. There are several variations of GSA which are sometimes
used, such as the "Hybrid Input Output" algorithm [2]. Some variations improve accuracy in some
regions of space at the expense of others, but none substantially improve the basic work flow.

8.2 Dataset generation

In principle, we could choose the g, 1) of the phase retrieval problem via any distribution, but in
practice it is advantageous to choose them close to what we expect in applications. To elaborate,
there is a theoretical justification for the existence of a true solution map (g, G) +— 1), arising from
optimal transport theory. On the basis of this, we would expect that a neural network which is
sufficiently expressive to approximate this map should be trainable on triples produced as above


https://doi.org/10.1109/JPROC.2004.840301
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457
https://doi.org/10.21105/joss.00602
https://doi.org/10.1364/OE.469080
https://opg.optica.org/oe/abstract.cfm?URI=oe-30-18-32680

via any distribution which covers the space of all g, 1) reasonably well. However, in practice this
is of course intractable for even moderately fine discretizations, due to the high dimensionality of
the spaces involved. Hence we focus our training on g, ¢ chosen to look close to what we expect in
practical applications.

In applications to laser beam shaping g represents an input laser beam. Commonly occurring laser
beams are typically well approximated by low-order expansions of Hermite-Gaussian polynomials,
and this is how we generate random ¢ for our data sets. To avoid undesirable boundary effects, we
make sure that the characteristic size of g is a bit smaller than the width of the discretization grid.

When generating data for our unsupervised learning method, we use essentially the same Hermite-
Gaussian expansion for both g and G. The only difference between the two is that we allow G to
have more spectral content in higher modes, reflecting the fact that in applications the output beam
typically has more flexible geometry.

From phase retrieval theory, it is known that solutions v to the phase retrieval problem are typically
close to being convex. Moreover, there are specific quantitative constraints on the gradient of ¢ in
terms of the support of the functions g, G. On the basis of these theoretical considerations, when
generating random phases ¢ we choose them to be convex and have an overall scale which is consistent
with the domain over which we discretize g, G. It turns out that for an N point discretization, the
second derivative of ¢ should be of order < w/N

A technical difficulty in training models on this data is that there are certain degeneracies which
affect the phase 1. In particular, given a solution to the phase retrieval problem 1)y, we may generate
another solution by either of the following operations:

* For any ¢ € R we may add ¢ to each component of vy. This is the global phase shift
invariance, and is an intrinsic property of the phase retrieval problem.

* To each component of )y we may add an arbitrary multiple of 27. This is the local
phase ambiguity, and is a consequence of our representation of phase retrieval solutions by
real-valued arrays, rather than phase-valued (i.e. taking values in S' C C) arrays.

Our method for generating convex phases mostly resolves the second issue (provided the curvature of
the phase is sufficiently small, which is satisfied in practice). To fix the first issue, we fix all phases to
be zero at a prescribed point (the left edge of the domain).

8.3 Differentiable DFT implementation
There are two ways to implement a differentiable DFT in Julia:

* The most straightforward solution is to realize the DFT as a matrix operation. This can be
automatically differentiated by Flux.jl. The downside of this approach is that the DFT now
has O(N?) complexity, which slows down data generation and training compared to an FFT
implementation.

* Alternatively, Flux.jl allows one to implement a custom differentiation rule for an operation
like an FFT. The backpropagation rule for an FFT layer turns out to be simply an inverse
FFT. This has the benefit of an O(N log(N)) complexity.

For reasons of simplicity and available time, we implemented the first option. With our chosen grid
size N = 100, a matrix multiplication DFT is about 5 times slower than an FFT. Training models
incorporating a matrix DFT is still feasible.



	Introduction
	Related work
	Dataset and Features
	 Methods 
	 General considerations 
	First approach: Supervised learning
	Second approach: Unsupervised learning

	Experiments/Results/Discussion
	Hyperparameter tuning and regularization

	Conclusion/Future Work 
	Contributions
	Appendix
	Literature of phase retrieval
	Dataset generation
	Differentiable DFT implementation


