
CS230 Project: AI Choreographer
Songchun (Ray) Xie, Xiaoxia Feng, Theo Kanell

Stanford University
rayxie11@stanford.edu, colca7@stanford.edu, tkanell@stanford.edu

Abstract—This project presents the effort to achieve two goals
in the process of making an AI choreographer. The first goal is
to classify dance videos into correct dance genres. Each frame
of the video is first fed into a feature extractor then to a custom
built RNN model. Hyperband algorithm is leveraged to auto-
tune hyperparameters in order to achieve the highest accuracy
on the test set. The second goal is to predict a single frame
of dancing given a series of past frames. A Conv-LSTM model
is explored. The trained model shows capabilities in correctly
predicting dance motion even in early stage iterations.

I. INTRODUCTION

Thanks to the versatility of AI, Machine Learning and
Neural Network, technology has advanced rapidly in many
different areas such as self-driving cars, speech recognition
systems, advertisement recommendation and etc. Some AI
systems has even proved themselves to be highly innovative
and creative. AI-generated artwork has won first prize in art
competitions [1]. AI-composed music has helped musicians
and artists to get started in new projects [2]. To further explore
the capabilities of AI, the team has proposed to experiment on
a different form of creative art: dance.

This project has two objectives: 1. develop a deep neural
network that can categorize dance videos into different styles
of choreograph correctly and 2. develop a generative neural
network that can predict the next possible frame given a series
of frames.

The first neural network can be used as a classification
tool for mass video data generation. It can also facilitate
downstream creative AIs such as choreography generation.
In later sections, this model is referred as the Classification
Model. The Classification Model employs a recurrent neural
network (RNN) called bi-directional long-short term memory
(LSTM) to output the softmax prediction for the possibilities
of each choreograph style.

The second neural network for predicting next possible
frame is more closely related to an ”AI Choreographer”.
This model is referred as Prediction Model. The Prediction
Model employs Conv-LSTM layers. These layers are LSTM
layers with enhanced by a convolution recurrent cell. The 1
dimensional output of the convolution cell is used as input of
the LSTM layer.

Both objectives in this project utilize an online public data
set [3] of labeled short dance videos. There are a total of 16
different styles of choreographs, ranging from ballet and cha
to sumba and waltz.

II. RELATED WORK

A. Previous Motion Classification Work
Choreograph style classification can be abstracted into a

more generic topic: human body motion classification. There
are mainly two different ways to approach this problem: using
videos and images or the time evolution of each human joint.

For motion classification using images and videos, extract-
ing human motion features is most important. One prevalent
method is to use transfer learning [4]: pass raw images or
videos through a well established neural network (such as
InceptionV3 [5]) to get the second to last layer output and
use those features as the input for the new neural network.
Since these neural networks have been well-trained and fine
tuned with huge amounts of data, the features extracted depicts
the image accurately.

As for specific dance related research, there are a number
of attempts to build neural networks that classify or generate
different choreographs. Even before the bloom of Machine
Learning and AI, choreography planning using computer soft-
ware was already developed. In 1968, Merce Cunningham
envisioned the design of a computer technology that would
enable 3 dimensional figures to be displayed on a computer
screen. This led to the invention of LifeForms, a computer
choreographic system [6]. For automated choreograph genera-
tion, DanceNet [7] is a successful attempt in generating dance
moves from videos. This neural net employed Variational
Autoencoder, LSTM and Mixture Density Network to generate
silhouette choreographs.

For the Classification Model, the team draws inspiration
from motion classification using images and videos. The
team decided to approach the task using transfer learning as
described above.

B. Previous Motion Prediction Work
The Prediction Model in this project leverages techniques

and deep learning models from nowcasting [14] convective
precipitation. Nowcasting technique was originally developed
to apply in the field of weather forecasting. It gives precise
and timely prediction of rainfall intensity in local region over
short period of time in hours. Deep neural network has helped
advancing nowcasting. RNN models provide new solutions
beyond traditional approaches like a longer-term numerical
weather prediction (NWP) model. Earlier LSTM encoder-
decoder framework [15] provides a general framework for
sequence-to-sequence learning problems by training tempo-
rally concatenated LSTMs: one for the input sequence and
another for the output sequence.

The Conv-LSTM model used in this project a machine
learning approach for precipitation nowcasting [12]. Precipita-
tion nowcasting is reformulated as a spatiotemporal sequence
forecasting problem. It can be solved under the general
sequence-to-sequence learning framework. A novel convolu-
tional LSTM (Conv-LSTM) network is proposed in order to
model the spatiotemporal relationships. By stacking multi-
ple Conv-LSTM layers and forming an encoding-forecasting
structure, an end-to-end trainable model can be built. The
versatility of this model is shown by testing and evaluating
on the Moving-MNIST Dataset.

In this project, the team formulates choreography generation
as a sequence-to-sequence learning task. The team leverages
the Conv-LSTM architecture model to generate frames as an
approach to predict dance motion in next frame.

C. Novelty

The use of video data separates our approach from prior
methods. The team believe that training data should be ac-
cessible as well as bountiful. Video examples of dancing can
be downloaded from the internet with ease. Straightforward
collection is also perk: anyone can pick up their phone and
start recording dance videos. Joint coordinates, on the contrary,
needs sophisticated data collection equipment that is difficult
to come by.

The Classification model takes advantage of transfer learn-
ing in order to boost our overall accuracy. We also custom
built the neural network to correctly classify for our final
prediction. In addition, the Hyperband algorithm was utilized
to tune the hyperparameters of RNN model in order to gain
the best validation accuracy.

The Prediction Model takes advantage of a convolution
LSTM architecture neural network to predict dance motion
in next frame given a sequence of past frames. In order to
simplify the model for quicker processing, the team converts
RGB video frames to grayscale frames.

III. DATASET AND FEATURES

A. Dataset Description

As mentioned in Section I, there are 16 different labels
of choreograph in the dataset: ballet, break, cha, flamenco,
foxtrot, jive, latin, pasodoble, quickstep, rumba, samba, square,
swing, tango, tap, and waltz. The data set contains a total of
1398 correctly labeled examples. Each example contains about
100-300 frames.

B. Classification Model

1) Data Preprocessing: Even though there are only 1398
examples, each example contains more than 100 frames. Some
even have more than 300 frames. Treating all frames for each
example directly as inputs would not only be computationally
expensive, but also prone to high variance due to the small
number of samples. The team thus decided to limit each
example 30 frames. For example, a 300 frame ballet video
can be cut into 10 separate example each containing 30
frames. In the end, there are a total of 13603 examples. Each

example would be labeled as a one-hot vector of length 16.
For example, a foxtrot example would be labeled as:

yfoxtrot = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T (1)

2) Train, Dev, Test Splits: The ratio between train and test
set is 10:1. During model parameter tuning using dev sets, the
team didn’t achieve better results. Thus, there is no dev test.

3) Feature Extraction: As mentioned in Section II, transfer
learning is employed in order to extract accurate and high level
features from each frame of the example. The team decided to
use InceptionV3 as the feature extractor for each frame. After
reading a single frame from the original data set, it is passed
through InceptionV3. Features are extracted from the second
to last layer which outputs a vector of length 2048. All frames
in the video are passed through the neural network which then
forms a new example of (30 × 2048) (30 frames each with
2048 features).

C. Prediction Model

1) Data Preprocessing: For the Prediction Model, data is
treated differently and each video example is processed in
the following steps. First each example is limited to a subset
number of frames (10, 20, 30) for faster training speed. Then,
each video frame converted from RGB to grayscale to reduce
dimensions. Early training shows that this conversion helps
accelerate training speed and convergence rate. The intuition
behind this is that grayscale frames will retain the same
spatiotemporal motion information without distraction from
color pixels. The reduced dimensions also reduces the number
of parameters to train, hence improves the training speed. After
that, frame shifting is employed. Each example contains a
fixed number of frames n after step a. These frames are used
for input x and label y generation using frame shifting. For
instance, x would contain frames 0 to n − 1, and y would
contain frames 1 to n.

x = d a t a [: , 0 : d a t a . shape [1] − 1 , : , :]
y = d a t a [: , 1 : d a t a . shape [1] , : , :]

2) Train, Dev, Test Splits: The ratio between train and test
set is 9:1. We didn’t use a dev set.

IV. CLASSIFICATION MODEL DESCRIPTION

Since the motion of dancing is contingent upon time, the
team decided to use a RNN as the main framework for
classification task. To fully understand a single movement in
a choreograph, it is better for the neural network to take both
past and future movements into account. This is the reason
why a bi-directional LSTM layer is used [10]. Before the
features of each frame is fed into the bi-directional LSTM
layer, it needs to be normalized first to reduce bias and
variance. Thus, a batch normalization layer is used. After
the bi-directional LSTM layer, a dropout layer is employed
so that the network doesn’t rely too heavily on one feature
[11]. Later, 2 fully connected layers with non-linear activation
functions are used. After that, 1 layer with a linear activation
is used before passing it into a softmax layer. The softmax

layer guarantees to output a vector with values summed to 1
as shown in Equation 2.

σ(zi) =
ezi∑K
j=1 e

zj
for i = 1, ...,K and z = (z1, ..., zK) ∈ RK

(2)
For loss, the team has chosen categorical cross-entropy loss

with an Adam optimizer. Figure 1 shows the RNN model’s
architecture.

Fig. 1: RNN Model Architecture

V. CLASSIFICATION MODEL EXPERIMENTS, RESULTS,
AND DISCUSSION

Table 1 shows the untuned hyperparameters used for the
Classification Model.

With these hyperparameters, the team was able to achieve
a high accuracy of 90.8%. Figure 2 shows the accuracy and
loss for train and test sets with respect to number of epochs.

RNN Layer Bi-directional LSTM
RNN Neurons 64
Dropout Rate 0.2

Dense Layer 1 Hidden Units 32
Dense Layer 2 Hidden Units 16

Epochs 20
Batch Size 128

TABLE I: Untuned Hyperparameters for Classification Model

Fig. 2: Model Accuracy and Loss for Train and Test Sets for
Classification Model

After attaining a good validation accuracy, we turned our
focus on to hyperparameter tuning. We utilized the Keras tuner
library to automate our hyperparemeter tuning. The parameters
we focused on tuning were the number of neurons for the
LSTM layer, the number of neurons for fully connected layers,
the learning rate for the Adam optimizer, and the activation
functions for fully connected dense layers.

Fig. 3: Hyperband vs RandomSearch

The team employed the Hyperband algorithm to determine
the best hyperparameters. From Figure 3, it is clear that Hy-
perband is much faster than Random Search at finding a ”best”
solution. This algorithm ”uses adaptive resource allocation
and early-stopping to quickly converge on a high-performing
model” [8]. By using a technique called successive halving to
prune lower performing sets, the algorithm is able to efficiently
run just the top performing models. One unique aspect of
Hyperband [9] is it takes full advantage of the resources
available by treating different configurations as competitors
in a bracket. It then compares each configuration and only
continues to further epochs that are on the better half. This
method significantly reduces run-time for our hyper-parameter

tuning which allows for further iteration in our model. The
tuning runs 1+log(max epochs) per bracket where the number
of brackets is dependent on system memory available.

RNN Layer Bi-directional LSTM
RNN Neurons 448
Dropout Rate 0.2

Dense Layer 1 Hidden Units 320
Dense Layer 2 Hidden Units 160

Epochs 20
Batch Size 128

TABLE II: Tuned Hyperparameters for Classification Model

Table II shows the hyperparameters found by our Hyperband
algorithm. In addition to the hyper-parameters shown, we
changed the activation for the two fully connected dense layer
to tanh, and used a learning rate of 0.0001 for our Adam
optimizer.

After hyperparameter tuning, our model generated signif-
icant improvement which is shown in Figure 6. Our model
reached 99% accuracy on our training data and a validation
accuracy of 95.5% These results demonstrated a good trade
off between bias and variance: near maximum accuracy for
the training set and low variance. We also saw significant
improvement when comparing the model loss. Using our tuned
hyperparameters we were able to reduce our validation loss to
16.4% which is a significant improvement compared to the
untuned model.

Fig. 4: Model Accuracy and Loss for Train and Test Sets for
Classification Model Tuned

VI. PREDICTION MODEL DESCRIPTION

ConvLSTM2D [13] architecture combines gating of LSTM
and 2D convolutions. ConvLSTM layers does a similar task
to LSTM but instead of matrix multiplications, it does con-
volution operations and retains the input dimensions. After
the images pass through the convolution layer, the result is
flattened into 1D array and this will be the input to the LSTM
layers with a set of features over time. ConvLSTM3D is simi-
lar and uses this layer to output a predict frame in its original
dimensions. In our model, we constructed 3 ConvLSTM2D
layers with batch normalization, and then a ConvLSTM3D
layer for spatiotemporal outputs. Figure 4 shows the Conv-
LSTM model architecture.

The input and output layer of the model share the same
dimensions to retain the size of original frame, shape denoted
by (num samples, num frames, image height, image width,

Fig. 5: Conv-LSTM Model Architecture

1). Once the model is trained for video generation, a sequence
of single frames is passed to the model for prediction. The
output frames are concatenated as the output prediction video.
For loss, the team has chosen binary cross-entropy loss with
an Adam optimizer.

VII. PREDICTION MODEL EXPERIMENTS, RESULTS AND
DISCUSSION

A. Experiment With RGB Frames

In the preliminary model, the original colored frames were
used to generate the dataset. Categorical cross-entropy loss
was used for the model. However, the model could not con-
verge, and validation loss also exploded. The team concluded
that the colored pixels complicated the learning task, and a
more complex model or different loss is required for training.

B. Experiment With Grayscale Frames

With the observation from the preliminary model, the team
improved the model with data preprocessing. The frames were
converted to grayscale before being input to the model leading
to successful convergence. Accordingly, model loss is adjusted
from categorical cross-entropy to binary cross-entropy. The
output Conv-LTSM3D filters were adjusted for the grayscale
output.

The grayscale images allows the model to be successfully
trained, but exponentially higher processing power is needed

compared to the classification model. The previous classifica-
tion model takes an image size (720× 1080), and the Conv-
LSTM model is limited to an image size of (60 × 90). With
the memory and CPU constraints, we reached 0.4886 model
loss after 10 epochs.

C. Next Frame Prediction and Video Generation

After the model was trained, we split the original video
sample frames into two segments. The front segment is passed
to the model to generate predicted frames, and the end segment
is reserved for validation. We can convert the predicted frames
to a gif and easily compare the prediction and original video
clips.

Fig. 6: Original/Predicted Frames

Figure 6 shows a comparison of original frames and pre-
dicted frames. Our prediction results shows: 1. Motion trends
were successfully predicted even with low accuracy model.
2. Better prediction result are normally seen from clips with
less noisy background and centered dancers. For the purpose
of an AI Choreographer, higher quality dataset will improve
prediction result: an ideal training dataset will be solo dancers
with a clear background. 3. Given more iterations and higher
resource capacity to improve the model, like using custom
loss, the model could achieve better performance.

VIII. CONCLUSION AND FUTURE WORK

A. Classification Model Has Better Performance

Metric Untuned Tuned
Train Accuracy 97% 99%

Train Loss 0.05 0.01%
Test Accuracy 90.8% 95.5%

Test Loss 0.48 0.2

TABLE III: Results for Classification Model

Our model was still performing at a lower accuracy rate than
the other well developed motion classification neural networks.
While previous models utilized more detailed data, we hoped
to reach a similar degree of accuracy with only image data as
mentioned in Related Works. Using the Hyperband algorithm
for hyperparameter tuning, we were able to improve our
model. The tuning found that increasing the number of neurons
at different layers improved model performance. The increased
complexity of the model allowed for our network to better
account for the factors necessary to determine the dance
category. The tuned model reached a validation accuracy of
95.5% which is within half a percentage point of the previous
work. This is very exciting as it demonstrates that the model
almost matched the previous model with smaller set of training
data.

B. Prediction Model Can Be Improved

Despite an untuned model and limited epochs, the Prediction
Model shows some interesting and promising early. We have
outlined several necessary steps to improve the prediction
model.

1) Custom Loss Function: We used binary cross-entropy
which is a popular loss function in machine learning. However,
a different loss function such as distance between pixel values
on the original and generated frame could produce better
results.

2) Augmented Data and Auto Tune: With more computa-
tional resources, we can augment the data, similar to clas-
sification, using full frame sections. We could also leverage
the Hyperband algorithm to tune the model for improved
performance.

C. Future Work

This research is a precursor to an automated choreography
generator which fits the team’s vision. An encoder and decoder
could be included in a generative neural network. In addition,
more diverse training data can be obtained (training set to test
set) such as dance videos to time evolution of human joint
coordinates, dance videos to time evolution of specific dance
movements and etc. Moreover, a cross-validation method can
be employed where the classification neural network can be
used to as validation method to check whether the generative
neural network has generated the correct style of choreogra-
phy. Or an ensemble of deep learning frameworks leveraging
the video prediction model for general motion predictions.

IX. CODE AVAILABILITY

This neural network is available for download at:
https://github.com/rayxie11/cs230 project.

X. CONTRIBUTIONS

Ray Xie: Data collection and preprocessing, research on
related work, design and build neural network architecture

Xiaoxia Feng: Data preprocessing, AWS setup, design and
build neural network, model debugging

Theo Kanell: Data research with social media sources, data
preprocessing, hyperparameter tuning

REFERENCES

[1] K. Roose, “An a.i.-generated picture won an art prize. artists
aren’t happy.,” The New York Times, 02-Sep-2022. [Online].
Available: https://www.nytimes.com/2022/09/02/technology/ai-artificial-
intelligence-artists.html. [Accessed: 26-Nov-2022].

[2] “Ai Music Generator - SOUNDRAW.” [Online]. Available:
https://soundraw.io/. [Accessed: 27-Nov-2022].

[3] D. Castro, S. Hickson, P. Sangkloy, B. Mittal, S. Dai, J. Hays, and
I. Essa, “Let’s dance: Learning from online dance videos,” arXiv.org,
23-Jan-2018. [Online]. Available: https://arxiv.org/abs/1801.07388. [Ac-
cessed: 26-Nov-2022].

[4] Weiss, K., Khoshgoftaar, T.M. & Wang, D. A survey of transfer learning.
J Big Data 3, 9 (2016). https://doi.org/10.1186/s40537-016-0043-6

[5] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[6] “Merce Cunningham + biped: Meet the master artist
through one of his most important works,” The
Kennedy Center. [Online]. Available: https://www.kennedy-
center.org/education/resources-for-educators/classroom-
resources/media-and-interactives/media/dance/merce-cunningham–
biped/. [Accessed: 01-Dec-2022].

[7] W. Zhuang, C. Wang, J. Chai, Y. Wang, M. Shao, and S. Xia, “Mu-
sic2Dance: DanceNet for music-driven dance generation,” ACM Trans-
actions on Multimedia Computing, Communications, and Applications,
vol. 18, no. 2, pp. 1–21, 2022.

[8] Li, Lisha, et al. ‘Efficient Hyperparameter Optimization and In-
finitely Many Armed Bandits’. CoRR, vol. abs/1603.06560, 2016,
http://arxiv.org/abs/1603.06560.

[9] Introduction to the Keras Tuner: Tensorflow Core.
TensorFlow. (n.d.). Retrieved December 6, 2022, from
https://www.tensorflow.org/tutorials/keras/keras tuner

[10] Cui, Z., Ke, R., Pu, Z., & Wang, Y. (2018). Deep bidirectional and
unidirectional LSTM recurrent neural network for network-wide traffic
speed prediction. arXiv preprint arXiv:1801.02143.

[11] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res. 15, 1 (January 2014),
1929–1958.

[12] Shi, Xingjian & Chen, Zhourong & Wang, Hao & Yeung, Dit-Yan &
Wong, Wai Kin & WOO, Wang-chun. (2015). Convolutional LSTM
Network: A Machine Learning Approach for Precipitation Nowcasting.

[13] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning
with neural networks. In NIPS, pages 3104–3112, 2014.

[14] Bližňák, V., Sokol, Z., & Zacharov, P. (2017). Nowcasting of deep
convective clouds and heavy precipitation: Comparison study between
NWP model simulation and extrapolation. Atmospheric Research, 184,
24–34. https://doi.org/10.1016/j.atmosres.2016.10.003

[15] Amogh Joshi. Next-Frame Video Predic-
tion with Convolutional LSTMs. Keras. 2021.
https://www.overleaf.com/project/63928c3d2c7eeb44e7cb235b

